File size: 21,502 Bytes
0a3525d
12b4214
 
0a3525d
69e8a46
0a3525d
69e8a46
0a3525d
 
12b4214
0a3525d
 
 
 
 
 
 
69e8a46
 
0a3525d
 
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
9bfe4ad
 
 
 
 
e90b8b5
 
 
 
 
 
 
0a3525d
9bfe4ad
75e9ff1
9bfe4ad
75e9ff1
 
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
662d788
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
69e8a46
662d788
69e8a46
662d788
 
 
0a3525d
 
662d788
 
 
0a3525d
662d788
0a3525d
 
 
 
 
 
 
69e8a46
 
 
 
0a3525d
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
9bfe4ad
 
 
 
69e8a46
 
 
 
 
 
 
 
 
0a3525d
69e8a46
0a3525d
 
 
 
69e8a46
662d788
 
69e8a46
 
 
 
 
 
 
 
 
 
662d788
0a3525d
 
 
 
 
 
 
 
 
 
 
9bfe4ad
 
 
 
 
 
 
 
0a3525d
9bfe4ad
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
75e9ff1
69e8a46
75e9ff1
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bfe4ad
 
 
0a3525d
 
 
 
 
 
 
 
 
 
9bfe4ad
 
 
 
 
0a3525d
 
 
69e8a46
 
12b4214
0a3525d
 
 
69e8a46
0a3525d
69e8a46
 
 
12b4214
69e8a46
 
12b4214
0a3525d
69e8a46
 
 
 
 
 
 
 
 
 
12b4214
 
 
 
 
 
69e8a46
12b4214
 
1caffd8
12b4214
 
 
69e8a46
12b4214
1caffd8
a4dfb48
12b4214
69e8a46
12b4214
 
 
69e8a46
 
12b4214
 
75e9ff1
 
 
69e8a46
 
 
12b4214
69e8a46
12b4214
 
1caffd8
0a3525d
12b4214
0a3525d
 
 
 
 
 
 
 
69e8a46
0a3525d
69e8a46
 
 
 
0a3525d
 
 
 
69e8a46
0a3525d
 
 
 
69e8a46
0a3525d
69e8a46
0a3525d
 
 
 
69e8a46
0a3525d
 
69e8a46
 
0a3525d
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
0a3525d
 
 
69e8a46
0a3525d
9bfe4ad
 
 
 
0a3525d
 
69e8a46
 
0a3525d
 
9bfe4ad
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import os
import queue
import threading
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Literal, Optional, Tuple, Union

import click
import hydra
import numpy as np
import torch
import torch._dynamo.config
import torch._inductor.config
from loguru import logger
from tqdm import tqdm

from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID
from fish_speech.text import clean_text, split_text

os.environ["TOKENIZERS_PARALLELISM"] = "false"
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True

if hasattr(torch._inductor.config, "fx_graph_cache"):
    # Experimental feature to reduce compilation times, will be on by default in future
    torch._inductor.config.fx_graph_cache = True


from fish_speech.models.text2semantic.llama import (
    BaseTransformer,
    DualARTransformer,
    NaiveTransformer,
)


def multinomial_sample_one_no_sync(
    probs_sort,
):  # Does multinomial sampling without a cuda synchronization
    q = torch.empty_like(probs_sort).exponential_(1)
    return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)


def logits_to_probs(
    logits,
    previous_tokens: Optional[torch.Tensor] = None,
    temperature: torch.Tensor = 1.0,
    top_p: torch.Tensor = 1.0,
    repetition_penalty: torch.Tensor = 1.0,
) -> torch.Tensor:
    # Apply repetition penalty
    if previous_tokens is not None:
        previous_tokens = previous_tokens.long()
        score = torch.gather(logits, dim=0, index=previous_tokens)
        score = torch.where(
            score < 0, score * repetition_penalty, score / repetition_penalty
        )
        logits.scatter_(dim=0, index=previous_tokens, src=score)

    # Apply top-p sampling
    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
    cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
    sorted_indices_to_remove = cum_probs > top_p
    sorted_indices_to_remove[0] = False  # keep at least one option
    indices_to_remove = sorted_indices_to_remove.scatter(
        dim=0, index=sorted_indices, src=sorted_indices_to_remove
    )
    logits = logits.masked_fill(indices_to_remove, -float("Inf"))

    logits = logits / max(temperature, 1e-5)

    probs = torch.nn.functional.softmax(logits, dim=-1)
    return probs


def sample(
    logits,
    previous_tokens: Optional[torch.Tensor] = None,
    **sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
    probs = logits_to_probs(
        logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs
    )
    idx_next = multinomial_sample_one_no_sync(probs)
    return idx_next, probs


def decode_one_token_ar(
    model: DualARTransformer,
    x: torch.Tensor,
    input_pos: torch.Tensor,
    previous_tokens: torch.Tensor = None,
    **sampling_kwargs,
) -> torch.Tensor:
    x = model.forward_generate(x, input_pos)
    codebooks = [
        sample(
            x.logits,
            previous_tokens=(
                previous_tokens[0] if previous_tokens is not None else None
            ),  # Disable repetition penalty for the token codebook
            **sampling_kwargs,
        )[0]
    ]
    x = x.hidden_states

    # Cleanup the cache
    for layer in model.fast_layers:
        layer.attention.kv_cache.k_cache.fill_(0)
        layer.attention.kv_cache.v_cache.fill_(0)

    for codebook_idx in range(model.config.num_codebooks):
        input_pos = torch.tensor([codebook_idx], device=x.device, dtype=torch.long)
        logits = model.forward_generate_fast(x, input_pos)
        a = sample(
            logits,
            previous_tokens=(
                previous_tokens[codebook_idx + 1]
                if previous_tokens is not None
                else None
            ),
            **sampling_kwargs,
        )[0]
        x = model.fast_embeddings(a)
        codebooks.append(a)

    return torch.stack(codebooks, dim=0)


def decode_one_token_naive(
    model: NaiveTransformer,
    x: torch.Tensor,
    input_pos: torch.Tensor,
    previous_tokens: torch.Tensor = None,
    **sampling_kwargs,
) -> torch.Tensor:
    x = model.forward_generate(x, input_pos)

    codebooks = [
        sample(
            x.token_logits,
            previous_tokens=None,  # Disable repetition penalty for the token codebook
            **sampling_kwargs,
        )[0]
    ]

    for i in range(model.config.num_codebooks):
        codebooks.append(
            sample(
                x.codebook_logits[:, :, i],
                previous_tokens=(
                    previous_tokens[i + 1] if previous_tokens is not None else None
                ),
                **sampling_kwargs,
            )[0]
        )

    return torch.stack(codebooks, dim=0)


def decode_n_tokens(
    model: NaiveTransformer,
    cur_token: torch.Tensor,
    input_pos: torch.Tensor,
    num_new_tokens: int,
    im_end_id: int = 4,
    decode_one_token=decode_one_token_naive,
    **sampling_kwargs,
):
    previous_tokens = torch.zeros(
        (model.config.num_codebooks + 1, model.config.max_seq_len),
        dtype=torch.int,
        device=cur_token.device,
    )

    for i in tqdm(range(num_new_tokens)):
        # We need to get windowed repeat penalty
        win_size = 16
        if i < win_size:
            window = previous_tokens[:, :win_size]
        else:
            window = previous_tokens[:, i - win_size : i]

        with torch.backends.cuda.sdp_kernel(
            enable_flash=False, enable_mem_efficient=False, enable_math=True
        ):  # Actually better for Inductor to codegen attention here
            next_token = decode_one_token(
                model=model,
                x=cur_token,
                input_pos=input_pos,
                previous_tokens=window,
                **sampling_kwargs,
            )

        input_pos += 1
        cur_token = next_token.view(1, model.config.num_codebooks + 1, -1)
        previous_tokens[:, i : i + 1] = next_token.view(
            model.config.num_codebooks + 1, -1
        )

        if cur_token[0, 0, -1] == im_end_id:
            break

    return previous_tokens[:, : i + 1]


@torch.no_grad()
@torch.inference_mode()
def generate(
    *,
    model: NaiveTransformer,
    prompt: torch.Tensor,
    max_new_tokens: int,
    im_end_id: int = 4,
    decode_one_token=decode_one_token_naive,
    **sampling_kwargs,
) -> torch.Tensor:
    """
    Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
    """

    # create an empty tensor of the expected final shape and fill in the current tokens
    T = prompt.size(1)

    if max_new_tokens:
        if T + max_new_tokens > model.config.max_seq_len:
            max_new_tokens = model.config.max_seq_len - T
            logger.info(f"Truncating max_new_tokens to {max_new_tokens}")

        T_new = T + max_new_tokens
    else:
        T_new = model.config.max_seq_len
        max_new_tokens = T_new - T

    device, dtype = prompt.device, prompt.dtype
    with torch.device(device):
        model.setup_caches(
            max_batch_size=1, max_seq_len=T_new, dtype=next(model.parameters()).dtype
        )

    codebook_dim = 1 + model.config.num_codebooks
    # create an empty tensor of the expected final shape and fill in the current tokens
    empty = torch.empty((codebook_dim, T_new), dtype=dtype, device=device)
    empty[:, :T] = prompt
    seq = empty
    input_pos = torch.arange(0, T, device=device)

    # Use non-accelerated version for now, to avoid compilation overhead
    prefill_decode = (
        decode_one_token_naive
        if isinstance(model, NaiveTransformer)
        else decode_one_token_ar
    )

    next_token = prefill_decode(
        model, prompt.view(1, codebook_dim, -1), input_pos, **sampling_kwargs
    )
    seq[:, T : T + 1] = next_token

    input_pos = torch.tensor([T], device=device, dtype=torch.int)
    x = decode_n_tokens(
        model,
        next_token.view(1, codebook_dim, -1),
        input_pos,
        max_new_tokens - 1,
        im_end_id=im_end_id,
        decode_one_token=decode_one_token,
        **sampling_kwargs,
    )
    # x = torch.cat(generated_tokens, dim=1)
    seq = seq[:, : T + 1 + x.size(1)]
    seq[:, T + 1 :] = x

    return seq


def encode_tokens(
    tokenizer,
    string,
    device="cuda",
    prompt_tokens=None,
    num_codebooks=4,
):
    string = clean_text(string)
    string = f"<|im_start|>user\n{string}<|im_end|><|im_start|>assistant\n"

    new_tokens = tokenizer.encode(
        string,
        add_special_tokens=False,
        max_length=10**6,
        truncation=False,
    )
    tokens = torch.tensor([new_tokens], dtype=torch.int, device=device)

    # Codebooks
    zeros = (
        torch.ones((num_codebooks, tokens.size(1)), dtype=torch.int, device=device)
        * CODEBOOK_PAD_TOKEN_ID
    )
    prompt = torch.cat((tokens, zeros), dim=0)

    if prompt_tokens is None:
        return prompt

    # Get prompt tokens
    if prompt_tokens.ndim == 3:
        assert (
            prompt_tokens.shape[0] == 1
        ), f"3 dim prompt tokens should have shape (1, num_codebooks, seq_len)"
        prompt_tokens = prompt_tokens[0]

    assert prompt_tokens.ndim == 2
    data = prompt_tokens + 1

    if prompt_tokens.shape[0] > num_codebooks:
        logger.warning(
            f"Prompt tokens shape {prompt_tokens.shape} is larger than num_codebooks {num_codebooks}, getting first {num_codebooks} codebooks"
        )
        data = data[:num_codebooks]

    # Add pad token for each codebook
    data = torch.cat(
        (data, torch.zeros((data.size(0), 1), dtype=torch.int, device=device)),
        dim=1,
    )

    # Since 1.0, we use <|semantic|>
    s0_token_id = tokenizer.convert_tokens_to_ids("<|semantic|>")
    end_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
    main_token_ids = (
        torch.ones((1, data.size(1)), dtype=torch.int, device=device) * s0_token_id
    )
    main_token_ids[0, -1] = end_token_id

    data = torch.cat((main_token_ids, data), dim=0)
    prompt = torch.cat((prompt, data), dim=1)

    return prompt


def load_model(checkpoint_path, device, precision, compile=False):
    model: Union[NaiveTransformer, DualARTransformer] = BaseTransformer.from_pretrained(
        checkpoint_path, load_weights=True
    )

    model = model.to(device=device, dtype=precision)
    logger.info(f"Restored model from checkpoint")

    if isinstance(model, DualARTransformer):
        decode_one_token = decode_one_token_ar
        logger.info("Using DualARTransformer")
    else:
        decode_one_token = decode_one_token_naive
        logger.info("Using NaiveTransformer")

    if compile:
        logger.info("Compiling function...")
        decode_one_token = torch.compile(
            decode_one_token, mode="reduce-overhead", fullgraph=True
        )

    return model.eval(), decode_one_token


@dataclass
class GenerateResponse:
    action: Literal["sample", "next"]
    codes: Optional[torch.Tensor] = None
    text: Optional[str] = None


def generate_long(
    *,
    model,
    device: str | torch.device,
    decode_one_token: callable,
    text: str,
    num_samples: int = 1,
    max_new_tokens: int = 0,
    top_p: int = 0.7,
    repetition_penalty: float = 1.5,
    temperature: float = 0.7,
    compile: bool = False,
    iterative_prompt: bool = True,
    max_length: int = 2048,
    chunk_length: int = 150,
    prompt_text: Optional[str | list[str]] = None,
    prompt_tokens: Optional[torch.Tensor | list[torch.Tensor]] = None,
):
    assert 0 < top_p <= 1, "top_p must be in (0, 1]"
    assert 0 < repetition_penalty < 2, "repetition_penalty must be in (0, 2)"
    assert 0 < temperature < 2, "temperature must be in (0, 2)"

    use_prompt = prompt_text is not None and prompt_tokens is not None
    if use_prompt and isinstance(prompt_text, str):
        prompt_text = [prompt_text]
        prompt_tokens = [prompt_tokens]

    assert use_prompt is False or len(prompt_text) == len(
        prompt_tokens
    ), "Prompt text and tokens must have the same length"

    model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)
    tokenizer = model.tokenizer
    im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")

    encoded = []
    texts = split_text(text, chunk_length) if iterative_prompt else [text]
    encoded_prompts = []

    if use_prompt:
        for idx, (t, c) in enumerate(zip(prompt_text, prompt_tokens)):
            encoded_prompts.append(
                encode_tokens(
                    tokenizer,
                    string=t,
                    device=device,
                    prompt_tokens=c,
                    num_codebooks=model.config.num_codebooks,
                )
            )

    for idx, text in enumerate(texts):
        encoded.append(
            encode_tokens(
                tokenizer,
                string=text,
                device=device,
                num_codebooks=model.config.num_codebooks,
            )
        )
        logger.info(f"Encoded text: {text}")

    # Move temperature, top_p, repetition_penalty to device
    # This is important so that changing params doesn't trigger recompile
    temperature = torch.tensor(temperature, device=device, dtype=torch.float)
    top_p = torch.tensor(top_p, device=device, dtype=torch.float)
    repetition_penalty = torch.tensor(
        repetition_penalty, device=device, dtype=torch.float
    )

    for sample_idx in range(num_samples):
        if torch.cuda.is_available():
            torch.cuda.synchronize()

        global_encoded = []
        seg_idx = 0

        while seg_idx < len(encoded):
            logger.info(
                f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}"
            )

            seg = encoded[seg_idx]
            global_encoded.append(seg)

            lengths = reversed([seg.size(1) for seg in global_encoded])

            # Pick last 2000 tokens
            count = 0
            for i, length in enumerate(lengths):
                count += length
                if count + length > max_length - 1024 - sum(
                    t.shape[1] for t in encoded_prompts
                ):
                    break

            if i != 0 and i % 2 == 0:
                i -= 1

            # Rotate the list, always make sure first segment is included to avoid drift
            if i < len(global_encoded) - 2:
                partial_encoded = global_encoded[:2] + global_encoded[-i:]
            else:
                partial_encoded = global_encoded

            if use_prompt:
                partial_encoded = encoded_prompts + partial_encoded

            cat_encoded = torch.cat(partial_encoded, dim=1)
            prompt_length = cat_encoded.size(1)

            t0 = time.perf_counter()
            y = generate(
                model=model,
                prompt=cat_encoded,
                max_new_tokens=max_new_tokens,
                im_end_id=im_end_id,
                decode_one_token=decode_one_token,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
            )

            if sample_idx == 0 and seg_idx == 0 and compile:
                logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")

            if torch.cuda.is_available():
                torch.cuda.synchronize()

            t = time.perf_counter() - t0

            tokens_generated = y.size(1) - prompt_length
            tokens_sec = tokens_generated / t
            logger.info(
                f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec"
            )
            logger.info(
                f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s"
            )

            if torch.cuda.is_available():
                logger.info(
                    f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB"
                )

            # Put the generated tokens
            # since there is <im_end> and <eos> tokens, we remove last 2 tokens
            codes = y[1:, prompt_length:-1].clone()
            codes = codes - 1
            assert (codes >= 0).all(), f"Negative code found"

            decoded = y[:, prompt_length:-1].clone()
            # But for global encoding, we should keep the <im_end> token

            global_encoded.append(decoded)
            assert (codes >= 0).all(), f"Negative code found: {codes}"
            yield GenerateResponse(action="sample", codes=codes, text=texts[seg_idx])
            seg_idx += 1

        # This indicates the end of the current sample
        yield GenerateResponse(action="next")


@dataclass
class WrappedGenerateResponse:
    status: Literal["success", "error"]
    response: Optional[GenerateResponse | Exception] = None


@dataclass
class GenerateRequest:
    request: dict
    response_queue: queue.Queue


def launch_thread_safe_queue(
    checkpoint_path,
    device,
    precision,
    compile: bool = False,
):
    input_queue = queue.Queue()
    init_event = threading.Event()

    def worker():
        model, decode_one_token = load_model(
            checkpoint_path, device, precision, compile=compile
        )
        init_event.set()

        while True:
            item: GenerateRequest | None = input_queue.get()
            if item is None:
                break

            kwargs = item.request
            response_queue = item.response_queue

            try:
                for chunk in generate_long(
                    model=model, decode_one_token=decode_one_token, **kwargs
                ):
                    response_queue.put(
                        WrappedGenerateResponse(status="success", response=chunk)
                    )
            except Exception as e:
                response_queue.put(WrappedGenerateResponse(status="error", response=e))

    threading.Thread(target=worker, daemon=True).start()
    init_event.wait()

    return input_queue


@click.command()
@click.option(
    "--text",
    type=str,
    default="你说的对, 但是原神是一款由米哈游自主研发的开放世界手游.",
)
@click.option("--prompt-text", type=str, default=None, multiple=True)
@click.option(
    "--prompt-tokens",
    type=click.Path(path_type=Path, exists=True),
    default=None,
    multiple=True,
)
@click.option("--num-samples", type=int, default=1)
@click.option("--max-new-tokens", type=int, default=0)
@click.option("--top-p", type=float, default=0.7)
@click.option("--repetition-penalty", type=float, default=1.2)
@click.option("--temperature", type=float, default=0.7)
@click.option(
    "--checkpoint-path",
    type=click.Path(path_type=Path, exists=True),
    default="checkpoints/fish-speech-1.2-sft",
)
@click.option("--device", type=str, default="cuda")
@click.option("--compile/--no-compile", default=False)
@click.option("--seed", type=int, default=42)
@click.option("--half/--no-half", default=False)
@click.option("--iterative-prompt/--no-iterative-prompt", default=True)
@click.option("--chunk-length", type=int, default=100)
def main(
    text: str,
    prompt_text: Optional[list[str]],
    prompt_tokens: Optional[list[Path]],
    num_samples: int,
    max_new_tokens: int,
    top_p: int,
    repetition_penalty: float,
    temperature: float,
    checkpoint_path: Path,
    device: str,
    compile: bool,
    seed: int,
    half: bool,
    iterative_prompt: bool,
    chunk_length: int,
) -> None:

    precision = torch.half if half else torch.bfloat16

    if prompt_text is not None and len(prompt_text) != len(prompt_tokens):
        raise ValueError(
            f"Number of prompt text ({len(prompt_text)}) and prompt tokens ({len(prompt_tokens)}) should be the same"
        )

    logger.info("Loading model ...")
    t0 = time.time()
    model, decode_one_token = load_model(
        checkpoint_path, device, precision, compile=compile
    )

    if torch.cuda.is_available():
        torch.cuda.synchronize()

    logger.info(f"Time to load model: {time.time() - t0:.02f} seconds")

    if prompt_tokens is not None:
        prompt_tokens = [torch.from_numpy(np.load(p)).to(device) for p in prompt_tokens]

    torch.manual_seed(seed)

    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)

    generator = generate_long(
        model=model,
        device=device,
        decode_one_token=decode_one_token,
        text=text,
        num_samples=num_samples,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        temperature=temperature,
        compile=compile,
        iterative_prompt=iterative_prompt,
        chunk_length=chunk_length,
        prompt_text=prompt_text,
        prompt_tokens=prompt_tokens,
    )

    idx = 0
    codes = []

    for response in generator:
        if response.action == "sample":
            codes.append(response.codes)
            logger.info(f"Sampled text: {response.text}")
        elif response.action == "next":
            if codes:
                np.save(f"codes_{idx}.npy", torch.cat(codes, dim=1).cpu().numpy())
                logger.info(f"Saved codes to codes_{idx}.npy")
            logger.info(f"Next sample")
            codes = []
            idx += 1
        else:
            logger.error(f"Error: {response}")


if __name__ == "__main__":
    main()