Spaces:
Running
on
A10G
Running
on
A10G
File size: 22,602 Bytes
0a3525d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
import random
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
from random import Random
from typing import Optional, Union
import grpc
import numpy as np
import pyarrow.parquet as pq
import torch
import torch.nn.functional as F
from datasets.download.streaming_download_manager import xopen
from huggingface_hub import HfApi
from lightning import LightningDataModule
from torch.distributed import get_rank, get_world_size, is_initialized
from torch.utils.data import DataLoader, IterableDataset, get_worker_info
from transformers import AutoTokenizer
from fish_speech.datasets.protos.text_data_pb2 import SampledData
from fish_speech.datasets.protos.text_data_stream import read_pb_stream
from fish_speech.text.clean import clean_text
from fish_speech.utils import RankedLogger
from fish_speech.utils.braceexpand import braceexpand
log = RankedLogger(__name__, rank_zero_only=True)
CODEBOOK_PAD_TOKEN_ID = 0
CODEBOOK_EOS_TOKEN_ID = 1
def split_by_rank_worker(files):
# We need to know the total number of devices
# to split the data properly
total_devices = 1
if is_initialized():
total_devices = get_world_size()
worker_info = get_worker_info()
if worker_info is not None:
total_devices *= worker_info.num_workers
if len(files) < total_devices:
# Repeat the files N times to match the number of devices
files = files * (total_devices // len(files) + 1)
# DDP
if is_initialized():
files = files[get_rank() :: get_world_size()]
# Split by worker
if worker_info is not None:
files = files[worker_info.id :: worker_info.num_workers]
return files
class StreamTextDataset(IterableDataset):
def __init__(
self,
files: Optional[Union[list[str], str]] = None,
prefix: Optional[str] = None,
seed: int = 42,
parquet_batch_size: int = 10000,
repo: str = "uonlp/CulturaX",
max_length: int = 1024,
tokenizer: AutoTokenizer = None,
):
super().__init__()
self.seed = seed
self.parquet_batch_size = parquet_batch_size
self.repo = repo
self.max_length = max_length
self.tokenizer = tokenizer
if files is None and prefix is None:
raise ValueError("Either files or prefix must be specified")
if prefix is not None:
files = HfApi().list_repo_files(repo, repo_type="dataset")
files = [
f for f in files if f.startswith(prefix) and f.endswith(".parquet")
]
log.info(f"Found {len(files)} files in {repo} with prefix {prefix}")
else:
if isinstance(files, str):
files = [files]
files = list(chain.from_iterable(map(braceexpand, files)))
log.info(f"Expanded {len(files)} files in {repo}")
# Get sharded files
self.files = sorted(files)
Random(seed).shuffle(self.files)
def __iter__(self):
files = split_by_rank_worker(self.files)
random.shuffle(files)
for filename in files:
try:
yield from self.parse_data(filename)
except Exception as e:
log.exception(f"Failed to parse {filename}: {e}")
def parse_data(self, filename: str):
for data in self.parse_data_internal(filename):
text = data["text"]
# encode
tokens = self.tokenizer.encode(
text,
add_special_tokens=False,
truncation=False,
max_length=10**6,
)
# Random choice self.max_length
if len(tokens) > self.max_length:
start = random.randint(0, len(tokens) - self.max_length)
tokens = tokens[start : start + self.max_length - 1]
tokens = (
[self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]
)
# Pad dims
placeholder_multi_codebook = torch.zeros((4, len(tokens)), dtype=torch.long)
tokens = torch.concat(
[
torch.tensor([tokens], dtype=torch.long),
placeholder_multi_codebook,
],
dim=0,
)
labels = tokens.clone()
tokens = tokens[:, :-1]
labels = labels[:, 1:]
labels[1:] = -100 # remove all placeholders
yield {"tokens": tokens, "labels": labels}
def parse_data_internal(self, filename: str):
url = f"https://huggingface.co/datasets/{self.repo}/resolve/main/{filename}"
with xopen(url, mode="rb") as stream:
parquet_file = pq.ParquetFile(stream)
for batch in parquet_file.iter_batches(
batch_size=self.parquet_batch_size, columns=["text"]
):
# In-batch shuffling
texts = [{"text": text.as_py()} for text in batch["text"]]
random.shuffle(texts)
yield from texts
class AutoAugTextDataset(IterableDataset):
"""
Auto Augment Dataset by Speaker
1. Random concatenate multiple sentences from the same speaker to form a longer sentence
2. Automatically normalize the text
For interactive mode, we use the following format (multiple sequences):
<s> [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] </s>
For non-interactive mode, we use the following format (one long sequence):
<s> [INST] text [/INST] ... </s>
"""
def __init__(
self,
proto_files: list[str],
seed: int = 42,
interactive_prob: float = 0.5,
max_length: int = 1024,
tokenizer: AutoTokenizer = None,
use_speaker: bool = True,
causual: bool = True,
use_negative_samples: bool = False,
num_codebooks: Optional[int] = None,
):
"""
Args:
proto_files: proto buf files if using local data
seed: random seed
interactive_prob: probability to use interactive mode
max_length: max length of the text
tokenizer: tokenizer
use_speaker: include speaker information in the prompt
causual: use causual sampling when using local data, disable will lead to random sampling
use_negative_samples: generate negative samples
num_codebooks: number of codebooks, if None, it will be automatically detected
"""
super().__init__()
assert 0 <= interactive_prob <= 1, "interactive_prob must be in [0, 1]"
self.seed = seed
self.max_length = max_length
self.tokenizer = tokenizer
self.interactive_prob = interactive_prob
self.use_speaker = use_speaker
self.proto_files = proto_files
self.causual = causual
self.use_negative_samples = use_negative_samples
self.num_codebooks = num_codebooks
self.semantic_token_id = self.tokenizer.convert_tokens_to_ids("<|semantic|>")
self.groups = None
def init_mock_data_server(self):
if self.groups is not None:
return
# Expand the proto files
expanded_proto_files = []
for filename in self.proto_files:
for i in braceexpand(filename):
i = Path(i)
if i.is_file():
expanded_proto_files.append(i)
elif i.is_dir():
expanded_proto_files.extend(i.rglob("*.proto"))
expanded_proto_files.extend(i.rglob("*.protos"))
else:
raise ValueError(f"{i} is not a file or directory")
expanded_proto_files = sorted(expanded_proto_files)
Random(self.seed).shuffle(expanded_proto_files)
self.groups = []
shard_proto_files = split_by_rank_worker(expanded_proto_files)
log.info(
f"Reading {len(shard_proto_files)} / {len(expanded_proto_files)} files"
)
count = 0
for filename in shard_proto_files:
with open(filename, "rb") as f:
for text_data in read_pb_stream(f):
self.groups.append(text_data)
count += 1
log.info(f"Read total {count} groups of data")
# Shuffle the lines
Random(self.seed).shuffle(self.groups)
self.group_weights = [len(i.sentences) for i in self.groups]
def __iter__(self):
while True:
yield self.augment()
def tokenize_sentence(self, sentence: str):
sentence = clean_text(sentence)
tokens = self.tokenizer.encode(
f"{sentence}",
max_length=10**6,
add_special_tokens=False,
truncation=False,
)
return sentence, len(tokens)
def sample_data(self):
if self.groups is None:
self.init_mock_data_server()
# Shuffle unique lines, estimate that each sample is at least 20 tokens
num_samples = self.max_length // 20
# choice group based on their number of samples
group = random.choices(self.groups, weights=self.group_weights, k=1)[0]
if self.causual:
# Sample in order
if num_samples >= len(group.sentences):
samples = group.sentences
else:
begin = random.randint(0, len(group.sentences) - num_samples)
samples = group.sentences[begin : begin + num_samples]
else:
samples = random.choices(
group.sentences, k=min(num_samples, len(group.sentences))
)
return SampledData(
source=group.source,
name=group.name,
samples=samples,
)
def augment(self):
# Random sample based on speaker using a truncated normal distribution
a = torch.tensor([0], dtype=torch.float32)
torch.nn.init.trunc_normal_(
a,
mean=self.max_length // 2,
std=self.max_length // 4,
a=10,
b=self.max_length,
)
remaining_tokens = a.long().item() - 4
final_text, final_semantic = [], []
response = self.sample_data()
if len(response.samples) == 0:
# Invalid group
return None
samples = list(response.samples)
idx = 0
use_interactive = random.random() < self.interactive_prob
all_tokens, all_labels = [], []
while remaining_tokens > 0 and len(samples) > 0:
sentence = samples.pop(0)
text = random.choice(sentence.texts)
text, length = self.tokenize_sentence(text)
remaining_tokens -= length + len(sentence.semantics[0].values)
if use_interactive is False:
final_text.append(text)
final_semantic.append(sentence.semantics)
else:
# For interactive mode, we only apply speaker for the first sentence
# [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST]
tokens, labels = self.pack_sentences(
sentences=[text],
semantics=[sentence.semantics],
speaker=response.name if (self.use_speaker and idx == 0) else None,
add_bos=idx == 0,
)
all_tokens.append(tokens)
all_labels.append(labels)
idx += 1
if use_interactive is False:
tokens, labels = self.pack_sentences(
final_text,
semantics=final_semantic,
speaker=response.name if self.use_speaker else None,
add_bos=True,
)
all_tokens.append(tokens)
all_labels.append(labels)
tokens = torch.cat(all_tokens, dim=1)
labels = torch.cat(all_labels, dim=1)
# Verify that the length is correct
assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}"
# Verify bos token
assert tokens[0, 0] == self.tokenizer.bos_token_id
data = {"tokens": tokens, "labels": labels}
if self.use_negative_samples:
negative_samples = self.generate_negative_samples(all_tokens, all_labels)
data.update(negative_samples)
return data
def generate_negative_samples(self, all_tokens, all_labels):
new_tokens, new_labels = [], []
for tokens, labels in zip(all_tokens, all_labels):
# If all codebooks are not -100, we find where it starts
start = torch.where(labels[1:].sum(0) != -100 * (labels.size(0) - 1))[0][0]
assert (labels[1:, start:] != -100).all() # This shouldn't happen
mode = random.choice(["repeat", "lost", "noise"])
begin = random.randint(start, labels.size(1) - 1)
end = random.randint(begin, labels.size(1) - 1)
if mode == "repeat":
tokens = torch.cat(
[
tokens[:, :begin],
tokens[:, begin:end],
tokens[:, begin:end],
tokens[:, end:],
],
dim=1,
)
labels = torch.cat(
[
labels[:, :begin],
labels[:, begin:end],
labels[:, begin:end],
labels[:, end:],
],
dim=1,
)
elif mode == "lost":
tokens = torch.cat([tokens[:, :begin], tokens[:, end:]], dim=1)
labels = torch.cat([labels[:, :begin], labels[:, end:]], dim=1)
elif mode == "noise":
middle_tokens, middle_labels = (
tokens[:, begin:end],
labels[:, begin:end],
)
random_order0 = torch.randperm(middle_tokens.size(1))
random_order1 = torch.randperm(middle_tokens.size(1))
middle_tokens = middle_tokens[:, random_order0]
middle_labels = middle_labels[:, random_order1]
tokens = torch.cat(
[tokens[:, :begin], middle_tokens, tokens[:, end:]], dim=1
)
labels = torch.cat(
[labels[:, :begin], middle_labels, labels[:, end:]], dim=1
)
new_tokens.append(tokens)
new_labels.append(labels)
tokens = torch.cat(new_tokens, dim=1)
labels = torch.cat(new_labels, dim=1)
# Verify that the length is correct
assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}"
return {"negative_tokens": tokens, "negative_labels": labels}
def pack_sentences(
self,
sentences: list[str],
semantics=list,
speaker: Optional[str] = None,
add_bos: bool = True,
):
if speaker is not None:
sentences = [f"[SPK: {speaker}]"] + sentences
final_text = "<|im_start|>user<|im_sep|>" + " ".join(sentences) + "<|im_end|>"
final_text = final_text + "<|im_start|>assistant<|im_sep|>"
encoded = self.tokenizer.encode(
final_text,
add_special_tokens=False,
truncation=False,
max_length=10**6,
)
semantic_length = sum([len(i[0].values) for i in semantics])
prompt_length = len(encoded)
num_codebooks = (
len(semantics[0]) if self.num_codebooks is None else self.num_codebooks
)
bos_bias = 1 if add_bos else 0
# Pack the tokens and semantics (add <s> and </s> to semantic tokens)
tokens = (
encoded
+ [self.semantic_token_id] * semantic_length
+ self.tokenizer.convert_tokens_to_ids(
["<|im_end|>", "<|end_of_sequence|>"]
)
)
if add_bos:
tokens = [self.tokenizer.bos_token_id] + tokens
# Codebook bos/padding: 0, eos: 1
codes = [
[CODEBOOK_PAD_TOKEN_ID] * (prompt_length + bos_bias)
for _ in range(num_codebooks)
]
for segment in semantics:
for book_idx, book in zip(range(num_codebooks), segment):
for j in book.values:
codes[book_idx].append(int(j) + 2)
for book in codes:
book.extend([CODEBOOK_EOS_TOKEN_ID] * 2)
tokens = [tokens] + codes
tokens = torch.tensor(tokens, dtype=torch.long)
labels = tokens.clone()
# Mask out the <s> tokens for semantic, predict semantic tokens only
# Since we don't mask out the input tokens, the language modeling still works
labels[1:, : (prompt_length + bos_bias)] = -100
tokens = tokens[:, :-1]
labels = labels[:, 1:]
# Verify the padding is correct, and the last token is eos
assert add_bos is False or tokens[0, 0] == self.tokenizer.bos_token_id
assert (tokens[1:, : prompt_length + bos_bias] == CODEBOOK_PAD_TOKEN_ID).all()
assert labels[0, -1] == self.tokenizer.eos_token_id
assert (labels[1:, -2:] == CODEBOOK_EOS_TOKEN_ID).all()
return tokens, labels
@dataclass
class TextDataCollator:
tokenizer: AutoTokenizer
max_length: int = 1024
def __call__(self, examples):
if "negative_tokens" in examples:
positive_examples = []
negative_examples = []
for i in examples:
positive_examples.append(
{
"tokens": i["tokens"],
"labels": i["labels"],
}
)
negative_examples.append(
{
"tokens": i["negative_tokens"],
"labels": i["negative_labels"],
}
)
examples = positive_examples + negative_examples
return self.batchify(examples)
def batchify(self, examples, tokens_key="tokens", labels_key="labels"):
tokens, attention_masks, labels = [], [], []
# Calculate the max length
max_tokens_length = 0
for example in examples:
max_tokens_length = max(max_tokens_length, example[tokens_key].size(1))
max_tokens_length = min(max_tokens_length, self.max_length)
for example in examples:
_tokens = example[tokens_key][:, :max_tokens_length]
_labels = example[labels_key][:, :max_tokens_length]
_attention_mask = torch.ones((max_tokens_length,), dtype=torch.bool)
tokens_length = _tokens.size(1)
_attention_mask[:tokens_length] = False
assert tokens_length == _labels.size(
1
), f"{tokens_length} != {_labels.size(1)}"
if tokens_length < max_tokens_length:
_tokens = F.pad(
_tokens,
(0, max_tokens_length - tokens_length),
value=self.tokenizer.eos_token_id,
)
_tokens[1:, tokens_length:] = CODEBOOK_PAD_TOKEN_ID
_labels = F.pad(
_labels, (0, max_tokens_length - _labels.size(1)), value=-100
)
tokens.append(_tokens)
attention_masks.append(_attention_mask)
labels.append(_labels)
tokens = torch.stack(tokens, dim=0)
attention_masks = torch.stack(attention_masks, dim=0)
labels = torch.stack(labels, dim=0)
return {
"inputs": tokens,
"attention_masks": attention_masks,
"labels": labels,
}
class InterleaveDataset(IterableDataset):
def __init__(
self,
datasets: list[IterableDataset],
probabilities: list[float],
seed: int = 42,
):
super().__init__()
self.datasets = datasets
self.probabilities = probabilities
self.seed = seed
def __iter__(self):
rng = np.random.default_rng(self.seed)
dataset_iterators = [iter(dataset) for dataset in self.datasets]
while True:
# Random choice one
dataset_idx = rng.choice(len(self.datasets), p=self.probabilities)
dataset_iterator = dataset_iterators[dataset_idx]
try:
yield next(dataset_iterator)
except StopIteration:
# Exhausted, create a new iterator
dataset_iterators[dataset_idx] = iter(self.datasets[dataset_idx])
yield next(dataset_iterators[dataset_idx])
class TextDataModule(LightningDataModule):
def __init__(
self,
train_dataset: Union[StreamTextDataset, AutoAugTextDataset, InterleaveDataset],
val_dataset: Union[StreamTextDataset, AutoAugTextDataset, InterleaveDataset],
batch_size: int = 32,
tokenizer: AutoTokenizer = None,
max_length: int = 1024,
num_workers: int = 4,
):
super().__init__()
self.train_dataset = train_dataset
self.val_dataset = val_dataset
self.batch_size = batch_size
self.tokenizer = tokenizer
self.max_length = max_length
self.num_workers = num_workers
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
collate_fn=TextDataCollator(self.tokenizer, self.max_length),
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
collate_fn=TextDataCollator(self.tokenizer, self.max_length),
num_workers=self.num_workers,
)
if __name__ == "__main__":
from tqdm import tqdm
ds = AutoAugTextDataset(
["data/protos"],
tokenizer=AutoTokenizer.from_pretrained("fishaudio/fish-speech-1"),
use_speaker=False,
interactive_prob=1.0,
use_negative_samples=False,
)
for i in ds:
print(ds.tokenizer.decode(i["tokens"][0], skip_special_tokens=False))
# i["labels"][0][i["labels"][0] == -100] = 0
# print(ds.tokenizer.decode(i["labels"][0], skip_special_tokens=False))
break
|