File size: 25,758 Bytes
69e8a46
0a3525d
28c720a
0a3525d
69e8a46
0a3525d
 
 
 
 
69e8a46
0a3525d
 
69e8a46
0a3525d
69e8a46
 
 
 
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
69e8a46
 
0a3525d
 
 
 
 
 
 
 
 
 
 
69e8a46
 
0a3525d
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
 
69e8a46
0a3525d
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
69e8a46
 
 
0a3525d
 
 
69e8a46
 
 
 
 
0a3525d
 
 
 
 
 
69e8a46
 
 
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
0a3525d
 
 
 
 
 
 
69e8a46
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
69e8a46
 
 
 
 
0a3525d
 
 
 
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c720a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
69e8a46
 
0a3525d
 
 
 
 
 
 
 
69e8a46
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
69e8a46
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
69e8a46
 
0a3525d
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
69e8a46
 
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
import json
import math
from collections import OrderedDict
from dataclasses import dataclass
from pathlib import Path
from typing import Optional

import torch
import torch.nn as nn
from einops import rearrange
from loguru import logger
from torch import Tensor
from torch.nn import functional as F
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.utils.checkpoint import checkpoint
from transformers import AutoTokenizer

from fish_speech.conversation import SEMANTIC_TOKEN
from fish_speech.utils import RankedLogger

from .lora import LoraConfig, setup_lora

log = RankedLogger(__name__, rank_zero_only=True)


def find_multiple(n: int, k: int) -> int:
    if n % k == 0:
        return n
    return n + k - (n % k)


@dataclass
class BaseModelArgs:
    model_type: str = "base"

    vocab_size: int = 32000
    n_layer: int = 32
    n_head: int = 32
    dim: int = 4096
    intermediate_size: int = None
    n_local_heads: int = -1
    head_dim: int = 64
    rope_base: float = 10000
    norm_eps: float = 1e-5
    max_seq_len: int = 2048
    dropout: float = 0.0
    tie_word_embeddings: bool = True
    attention_qkv_bias: bool = False

    # Codebook configs
    codebook_size: int = 160
    num_codebooks: int = 4

    # Gradient checkpointing
    use_gradient_checkpointing: bool = True

    # Initialize the model
    initializer_range: float = 0.02

    def __post_init__(self):
        if self.n_local_heads == -1:
            self.n_local_heads = self.n_head
        if self.intermediate_size is None:
            hidden_dim = 4 * self.dim
            n_hidden = int(2 * hidden_dim / 3)
            self.intermediate_size = find_multiple(n_hidden, 256)
        self.head_dim = self.dim // self.n_head

    @staticmethod
    def from_pretrained(path: str):
        path = Path(path)

        if path.is_dir():
            path = path / "config.json"

        with open(path, "r", encoding="utf-8") as f:
            data = json.load(f)

        match data["model_type"]:
            case "naive":
                cls = NaiveModelArgs
            case "dual_ar":
                cls = DualARModelArgs
            case _:
                raise ValueError(f"Unknown model type: {data['model_type']}")

        return cls(**data)

    def save(self, path: str):
        with open(path, "w") as f:
            json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False)


@dataclass
class NaiveModelArgs(BaseModelArgs):
    model_type: str = "naive"


@dataclass
class DualARModelArgs(BaseModelArgs):
    model_type: str = "dual_ar"
    n_fast_layer: int = 4


class KVCache(nn.Module):
    def __init__(
        self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16
    ):
        super().__init__()
        cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim)
        self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype))
        self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype))

    def update(self, input_pos, k_val, v_val):
        # input_pos: [S], k_val: [B, H, S, D]
        assert input_pos.shape[0] == k_val.shape[2]

        k_out = self.k_cache
        v_out = self.v_cache
        k_out[:, :, input_pos] = k_val
        v_out[:, :, input_pos] = v_val

        return k_out, v_out


@dataclass
class TransformerForwardResult:
    token_logits: Tensor
    codebook_logits: Tensor


@dataclass
class BaseTransformerForwardResult:
    logits: Tensor
    hidden_states: Tensor


class BaseTransformer(nn.Module):
    def __init__(
        self, config: BaseModelArgs, tokenizer: AutoTokenizer, init_weights: bool = True
    ) -> None:
        super().__init__()
        self.config = config
        self.tokenizer = tokenizer

        self.semantic_token_id = tokenizer.convert_tokens_to_ids(SEMANTIC_TOKEN)

        # Slow transformer
        self.embeddings = nn.Embedding(
            config.vocab_size,
            config.dim,
        )
        self.codebook_embeddings = nn.Embedding(
            config.codebook_size * config.num_codebooks,
            config.dim,
        )
        self.layers = nn.ModuleList(
            TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer)
        )
        self.norm = RMSNorm(config.dim, eps=config.norm_eps)

        if self.config.tie_word_embeddings is False:
            self.output = nn.Linear(
                config.dim,
                config.vocab_size,
                bias=False,
            )

        self.register_buffer(
            "freqs_cis",
            precompute_freqs_cis(
                config.max_seq_len,
                config.dim // config.n_head,
                config.rope_base,
            ),
            persistent=False,
        )
        self.register_buffer(
            "causal_mask",
            torch.tril(
                torch.ones(
                    config.max_seq_len,
                    config.max_seq_len,
                    dtype=torch.bool,
                )
            ),
            persistent=False,
        )

        # For kv cache
        self.max_batch_size = -1
        self.max_seq_len = -1

        if init_weights:
            self.apply(self._init_weights)

    def setup_caches(
        self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16
    ):
        if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size:
            return

        head_dim = self.config.dim // self.config.n_head
        max_seq_len = find_multiple(max_seq_len, 8)
        self.max_seq_len = max_seq_len
        self.max_batch_size = max_batch_size

        for b in self.layers:
            b.attention.kv_cache = KVCache(
                max_batch_size,
                max_seq_len,
                self.config.n_local_heads,
                head_dim,
                dtype=dtype,
            )

    def embed(self, x: Tensor) -> Tensor:
        vocab_embeds = [self.embeddings(x[:, 0])]
        for i in range(self.config.num_codebooks):
            emb = self.codebook_embeddings(x[:, i + 1] + i * self.config.codebook_size)
            emb[x[:, 0] != self.semantic_token_id] = 0
            vocab_embeds.append(emb)

        x = torch.stack(vocab_embeds, dim=3)
        x = x.sum(dim=3)

        return x

    def forward(
        self,
        inp: Tensor,
        key_padding_mask: Optional[Tensor] = None,
    ) -> BaseTransformerForwardResult:
        seq_len = inp.size(2)

        # Here we want to merge the embeddings of the codebooks
        x = self.embed(inp)

        freqs_cis = self.freqs_cis[:seq_len]

        # Not that the causal mask here follows the definition of scaled_dot_product_attention
        # That is, FALSE means masked out
        # To maintain consistency, key_padding_mask use TRUE to mask out
        mask = None
        if key_padding_mask is not None:
            mask = self.causal_mask[None, None, :seq_len, :seq_len]  # (B, N, Q, K)
            mask = mask & key_padding_mask[:, None, None, :].logical_not()

        for layer in self.layers:
            if self.config.use_gradient_checkpointing and self.training:
                x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True)
            else:
                x = layer(x, freqs_cis, mask)

        # We got slow_out here
        slow_out = self.norm(x)

        if self.config.tie_word_embeddings:
            token_logits = F.linear(slow_out, self.embeddings.weight)
        else:
            token_logits = self.output(slow_out)

        return BaseTransformerForwardResult(
            logits=token_logits,
            hidden_states=x,
        )

    def forward_generate(
        self,
        x: Tensor,
        input_pos: Optional[Tensor] = None,
        return_all: bool = False,
    ) -> BaseTransformerForwardResult:
        # This is used for generation, optimized for torch compile
        assert (
            self.max_seq_len != -1 and self.max_batch_size != -1
        ), "Please call setup_caches before forward_generate"

        x = self.embed(x)

        mask = self.causal_mask[
            None, None, input_pos, : self.max_seq_len
        ]  # (B, N, Q, K)
        freqs_cis = self.freqs_cis[input_pos]

        for layer in self.layers:
            x = layer(x, freqs_cis, mask, input_pos=input_pos)

        # If prefill, we only calculate the logits of last token
        if x.size(1) > 1 and not return_all:
            x = x[:, -1:]

        # We got slow_out here
        slow_out = self.norm(x)

        if self.config.tie_word_embeddings:
            token_logits = F.linear(slow_out, self.embeddings.weight)
        else:
            token_logits = self.output(slow_out)

        return BaseTransformerForwardResult(
            logits=token_logits,
            hidden_states=x,
        )

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @staticmethod
    def from_pretrained(
        path: str,
        load_weights: bool = False,
        max_length: int | None = None,
        lora_config: LoraConfig | None = None,
        rope_base: int | None = None,
    ) -> "BaseTransformer":
        config = BaseModelArgs.from_pretrained(str(path))
        if max_length is not None:
            config.max_seq_len = max_length
            log.info(f"Override max_seq_len to {max_length}")

        if rope_base is not None:
            config.rope_base = rope_base
            log.info(f"Override rope_base to {rope_base}")

        match config.model_type:
            case "naive":
                model_cls = NaiveTransformer
            case "dual_ar":
                model_cls = DualARTransformer
            case _:
                raise ValueError(f"Unknown model type: {config.model_type}")

        tokenizer = AutoTokenizer.from_pretrained(str(path))
        log.info(f"Loading model from {path}, config: {config}")
        model = model_cls(config, tokenizer=tokenizer)

        if lora_config is not None:
            setup_lora(model, lora_config)
            log.info(f"LoRA setup: {lora_config}")

        if load_weights is False:
            log.info("Randomly initialized model")
        else:

            if "int8" in str(Path(path)):
                logger.info("Using int8 weight-only quantization!")
                from tools.llama.quantize import WeightOnlyInt8QuantHandler

                simple_quantizer = WeightOnlyInt8QuantHandler(model)
                model = simple_quantizer.convert_for_runtime()

            if "int4" in str(Path(path)):
                logger.info("Using int4 quantization!")
                path_comps = path.name.split("-")
                assert path_comps[-2].startswith("g")
                groupsize = int(path_comps[-2][1:])
                from tools.llama.quantize import WeightOnlyInt4QuantHandler

                simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
                model = simple_quantizer.convert_for_runtime()

            weights = torch.load(
                Path(path) / "model.pth", map_location="cpu", mmap=True
            )

            if "state_dict" in weights:
                logger.warning(
                    "Using a TextToSemantic LightningModule checkpoint, "
                    "please make sure it is a full model, not a LoRA model."
                )
                weights = weights["state_dict"]

            if next(iter(weights.keys())).startswith("model."):
                logger.info(
                    f"Remove prefix 'model.' created by TextToSemantic LightningModule from keys"
                )
                new_weights = OrderedDict()
                for k, v in weights.items():
                    new_weights[k.replace("model.", "")] = v
                weights = new_weights

            # Verify the name and shape of parameters since strict=False in load_state_dict.
            for k, v in model.named_parameters():
                if k not in weights:
                    logger.warning(f"No weight for {k}")
                elif v.shape != weights[k].shape:
                    logger.warning(
                        f"Shape mismatch for {k}: {v.shape} vs {weights[k].shape}"
                    )

            err = model.load_state_dict(weights, strict=False, assign=True)
            log.info(f"Loaded weights with error: {err}")

        return model

    def save_pretrained(self, path: str, drop_lora: bool = False):
        path = Path(path)
        path.mkdir(parents=True, exist_ok=True)

        self.config.save(path / "config.json")
        state_dict = self.state_dict()

        if drop_lora:
            for key in list(state_dict.keys()):
                if "lora" not in key:
                    continue

                state_dict.pop(key)
                log.info(f"Drop LoRA parameter: {key}")

        torch.save(state_dict, path / "model.pth")
        self.tokenizer.save_pretrained(path)


class NaiveTransformer(BaseTransformer):
    def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None:
        super().__init__(config, init_weights=False, tokenizer=tokenizer)

        self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.codebook_output = nn.Linear(
            config.dim,
            config.codebook_size * config.num_codebooks,
            bias=False,
        )

        self.apply(self._init_weights)

    def decode(self, result: BaseTransformerForwardResult) -> TransformerForwardResult:
        token_logits = result.logits
        x = result.hidden_states

        # Codebook
        codebook_logits = self.codebook_output(self.codebook_norm(x))
        codebook_logits = rearrange(
            codebook_logits, "b n (c d) -> b n c d", c=self.config.num_codebooks
        )

        return TransformerForwardResult(
            token_logits=token_logits,
            codebook_logits=codebook_logits,
        )

    def forward(
        self,
        inp: Tensor,
        key_padding_mask: Optional[Tensor] = None,
    ) -> TransformerForwardResult:
        result = super().forward(
            inp=inp,
            key_padding_mask=key_padding_mask,
        )
        return self.decode(result)

    def forward_generate(
        self, x: Tensor, input_pos: Optional[Tensor] = None
    ) -> TransformerForwardResult:
        result = super().forward_generate(x, input_pos)
        return self.decode(result)


class DualARTransformer(BaseTransformer):
    def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None:
        super().__init__(config, init_weights=False, tokenizer=tokenizer)

        # Fast transformer
        self.fast_embeddings = nn.Embedding(config.codebook_size, config.dim)

        # The equivalent bs is so large that sdpa doesn't work
        self.fast_layers = nn.ModuleList(
            TransformerBlock(config, use_sdpa=False) for _ in range(config.n_fast_layer)
        )
        self.fast_norm = RMSNorm(config.dim, eps=config.norm_eps)
        self.fast_output = nn.Linear(
            config.dim,
            config.codebook_size,
            bias=False,
        )

        self.apply(self._init_weights)

    def setup_caches(
        self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16
    ):
        super().setup_caches(max_batch_size, max_seq_len, dtype)

        head_dim = self.config.dim // self.config.n_head

        # Fast transformer
        # The max seq len here is the number of codebooks
        for b in self.fast_layers:
            b.attention.kv_cache = KVCache(
                max_batch_size,
                self.config.num_codebooks,
                self.config.n_local_heads,
                head_dim,
                dtype=dtype,
            )

    def forward(
        self,
        inp: Tensor,
        key_padding_mask: Optional[Tensor] = None,
    ) -> TransformerForwardResult:
        parent_result = super().forward(inp, key_padding_mask)
        token_logits = parent_result.logits
        x = parent_result.hidden_states

        # Fast transformer
        fast_seq_len = self.config.num_codebooks
        fast_mask = self.causal_mask[
            None, None, :fast_seq_len, :fast_seq_len
        ]  # (B, N, Q, K)
        fast_freqs_cis = self.freqs_cis[:fast_seq_len]

        # Drop the last token and rotate left
        codebooks = inp[:, 1:-1, 1:]
        codebooks = F.pad(codebooks, (0, 1), value=0)
        codebook_embeddings = self.fast_embeddings(codebooks)
        x = torch.cat([x[:, None], codebook_embeddings], dim=1)
        b, s = x.size(0), x.size(2)
        x = rearrange(x, "b n s d -> (b s) n d")  # flatten the batch and seq_len

        # Remove padded part
        codebooks = rearrange(codebooks, "b n s -> (b s) n")
        codebook_mask = (codebooks == 0).all(dim=-1)

        if torch.all(codebook_mask):
            # If all codebooks are padded, we keep first 8 to make sure the model runs
            codebook_mask[:8] = False

        x_bs, x_len = x.size(0), x.size(1)
        x = x[~codebook_mask]

        for layer in self.fast_layers:
            if self.config.use_gradient_checkpointing and self.training:
                x = checkpoint(layer, x, fast_freqs_cis, fast_mask, use_reentrant=True)
            else:
                x = layer(x, fast_freqs_cis, fast_mask)

        # unflatten the batch and num_codebooks
        fast_out = self.fast_norm(x)
        codebook_logits = self.fast_output(fast_out)

        # Re-pad the codebook_logits
        buffer = torch.zeros(
            x_bs,
            x_len,
            codebook_logits.size(-1),
            device=codebook_logits.device,
            dtype=codebook_logits.dtype,
        )
        buffer[~codebook_mask] = codebook_logits
        codebook_logits = buffer

        assert codebook_logits.shape[1] == self.config.num_codebooks
        codebook_logits = rearrange(
            codebook_logits,
            "(b s) n d -> b s n d",
            b=b,
            s=s,
            n=self.config.num_codebooks,
        )

        return TransformerForwardResult(
            token_logits=token_logits,
            codebook_logits=codebook_logits,
        )

    def forward_generate_fast(
        self, x: Tensor, input_pos: Optional[Tensor] = None
    ) -> Tensor:
        # Fast transformer
        x = x.view(1, 1, -1)

        fast_mask = self.causal_mask[
            None, None, input_pos, : self.config.num_codebooks
        ]  # (B, N, Q, K)
        fast_freqs_cis = self.freqs_cis[input_pos]

        for layer in self.fast_layers:
            x = layer(x, fast_freqs_cis, fast_mask, input_pos=input_pos)

        # unflatten the batch and num_codebooks
        fast_out = self.fast_norm(x)  # only take the last token
        codebook_logits = self.fast_output(fast_out)

        return codebook_logits


class TransformerBlock(nn.Module):
    def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None:
        super().__init__()
        self.attention = Attention(config, use_sdpa=use_sdpa)
        self.feed_forward = FeedForward(config)
        self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
        self.attention_norm = RMSNorm(config.dim, config.norm_eps)

    def forward(
        self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None
    ) -> Tensor:
        h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos)
        out = h + self.feed_forward(self.ffn_norm(h))
        return out


class Attention(nn.Module):
    def __init__(self, config: BaseModelArgs, use_sdpa: bool = True):
        super().__init__()
        assert config.dim % config.n_head == 0

        total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
        # key, query, value projections for all heads, but in a batch
        self.wqkv = nn.Linear(
            config.dim, total_head_dim, bias=config.attention_qkv_bias
        )
        self.wo = nn.Linear(config.dim, config.dim, bias=False)
        self.kv_cache = None

        self.dropout = config.dropout
        self.n_head = config.n_head
        self.head_dim = config.head_dim
        self.n_local_heads = config.n_local_heads
        self.dim = config.dim
        self.use_sdpa = use_sdpa
        self._register_load_state_dict_pre_hook(self.load_hook)

    def load_hook(self, state_dict, prefix, *args):
        if prefix + "wq.weight" in state_dict:
            wq = state_dict.pop(prefix + "wq.weight")
            wk = state_dict.pop(prefix + "wk.weight")
            wv = state_dict.pop(prefix + "wv.weight")
            state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        mask: Tensor,
        input_pos: Optional[Tensor] = None,
    ) -> Tensor:
        bsz, seqlen, _ = x.shape

        kv_size = self.n_local_heads * self.head_dim
        q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)

        q = q.view(bsz, seqlen, self.n_head, self.head_dim)
        k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
        v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)

        q = apply_rotary_emb(q, freqs_cis)
        k = apply_rotary_emb(k, freqs_cis)

        q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))

        if self.kv_cache is not None:
            k, v = self.kv_cache.update(input_pos, k, v)

        k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
        v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)

        if self.use_sdpa:
            if mask is None:
                with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
                    y = F.scaled_dot_product_attention(
                        q,
                        k,
                        v,
                        dropout_p=self.dropout if self.training else 0.0,
                        is_causal=True,
                        # No third party attn_mask here to use flash_attention
                    )
            else:
                y = F.scaled_dot_product_attention(
                    q,
                    k,
                    v,
                    attn_mask=mask,
                    dropout_p=self.dropout if self.training else 0.0,
                )
        else:
            y = self.eq_scaled_dot_product_attention(
                q,
                k,
                v,
                attn_mask=mask,
                dropout_p=self.dropout if self.training else 0.0,
            )

        y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)

        return self.wo(y)

    def eq_scaled_dot_product_attention(
        self,
        query,
        key,
        value,
        attn_mask=None,
        dropout_p=0.0,
    ) -> torch.Tensor:
        # This is a standard scaled dot product attention
        # It's low efficient, but it doesn't raise cuda error

        L, S = query.size(-2), key.size(-2)
        scale_factor = 1 / math.sqrt(query.size(-1))
        attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device)

        if attn_mask is not None:
            if attn_mask.dtype == torch.bool:
                attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
            else:
                attn_bias += attn_mask

        attn_weight = query @ key.transpose(-2, -1) * scale_factor
        attn_weight += attn_bias
        attn_weight = torch.softmax(attn_weight, dim=-1)
        attn_weight = torch.dropout(attn_weight, dropout_p, train=True)

        return attn_weight @ value


class FeedForward(nn.Module):
    def __init__(self, config: BaseModelArgs) -> None:
        super().__init__()
        self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
        self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)

    def forward(self, x: Tensor) -> Tensor:
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

    def forward(self, x: Tensor) -> Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
    freqs = 1.0 / (
        base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
    )
    t = torch.arange(seq_len, device=freqs.device)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
    return cache.to(dtype=torch.bfloat16)


def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
    xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
    freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
            xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
        ],
        -1,
    )

    x_out2 = x_out2.flatten(3)
    return x_out2.type_as(x)