File size: 22,871 Bytes
0a3525d
12b4214
 
0a3525d
 
 
 
 
12b4214
0a3525d
 
 
 
 
 
 
 
 
 
662d788
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662d788
 
0a3525d
 
662d788
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
662d788
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662d788
 
 
 
 
 
 
 
 
 
0a3525d
 
662d788
 
 
0a3525d
662d788
0a3525d
 
 
 
 
 
 
 
 
 
12b4214
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b4214
0a3525d
 
 
 
 
 
 
662d788
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
 
 
 
 
 
 
662d788
0a3525d
 
 
 
 
 
 
 
 
 
 
12b4214
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b4214
0a3525d
 
 
 
 
 
 
 
 
 
12b4214
 
 
 
 
 
 
0a3525d
 
12b4214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a3525d
12b4214
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import os
import queue
import threading
import time
from pathlib import Path
from typing import Optional, Tuple, Union

import click
import hydra
import numpy as np
import torch
import torch._dynamo.config
import torch._inductor.config
from hydra import compose, initialize
from hydra.utils import instantiate
from loguru import logger
from tqdm import tqdm
from transformers import AutoTokenizer

from fish_speech.datasets.text import CODEBOOK_EOS_TOKEN_ID, CODEBOOK_PAD_TOKEN_ID
from fish_speech.text.clean import clean_text

os.environ["TOKENIZERS_PARALLELISM"] = "false"
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True

if hasattr(torch._inductor.config, "fx_graph_cache"):
    # Experimental feature to reduce compilation times, will be on by default in future
    torch._inductor.config.fx_graph_cache = True


from fish_speech.models.text2semantic.llama import DualARTransformer, NaiveTransformer


def multinomial_sample_one_no_sync(
    probs_sort,
):  # Does multinomial sampling without a cuda synchronization
    q = torch.empty_like(probs_sort).exponential_(1)
    return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)


def logits_to_probs(
    logits,
    previous_tokens: Optional[torch.Tensor] = None,
    temperature: float = 1.0,
    top_k: Optional[int] = None,
    top_p: Optional[int] = None,
    repetition_penalty: float = 1.0,
):
    if previous_tokens is not None and repetition_penalty != 1.0:
        previous_tokens = previous_tokens.long()
        score = torch.gather(logits, dim=0, index=previous_tokens)
        score = torch.where(
            score < 0, score * repetition_penalty, score / repetition_penalty
        )
        logits.scatter_(dim=0, index=previous_tokens, src=score)

    if top_p is not None and top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cum_probs = torch.cumsum(
            torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
        )
        sorted_indices_to_remove = cum_probs > top_p
        sorted_indices_to_remove[0] = False  # keep at least one option
        indices_to_remove = sorted_indices_to_remove.scatter(
            dim=0, index=sorted_indices, src=sorted_indices_to_remove
        )
        logits = logits.masked_fill(indices_to_remove, -float("Inf"))

    logits = logits / max(temperature, 1e-5)

    if top_k is not None:
        v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
        pivot = v.select(-1, -1).unsqueeze(-1)
        logits = torch.where(logits < pivot, -float("Inf"), logits)

    probs = torch.nn.functional.softmax(logits, dim=-1)
    return probs


def sample(
    logits,
    previous_tokens: Optional[torch.Tensor] = None,
    **sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
    probs = logits_to_probs(
        logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs
    )
    idx_next = multinomial_sample_one_no_sync(probs)
    return idx_next, probs


def decode_one_token_ar(
    model: DualARTransformer,
    x: torch.Tensor,
    input_pos: torch.Tensor,
    previous_tokens: torch.Tensor = None,
    **sampling_kwargs,
) -> torch.Tensor:
    x = model.forward_generate(x, input_pos)
    codebooks = [
        sample(
            x.logits,
            previous_tokens=None,  # Disable repetition penalty for the token codebook
            **sampling_kwargs,
        )[0]
    ]
    x = x.hidden_states

    # Cleanup the cache
    for layer in model.fast_layers:
        layer.attention.kv_cache.k_cache.fill_(0)
        layer.attention.kv_cache.v_cache.fill_(0)

    for codebook_idx in range(model.config.num_codebooks):
        input_pos = torch.tensor([codebook_idx], device=x.device, dtype=torch.long)
        logits = model.forward_generate_fast(x, input_pos)
        a = sample(
            logits,
            previous_tokens=(
                previous_tokens[codebook_idx + 1]
                if previous_tokens is not None
                else None
            ),
            **sampling_kwargs,
        )[0]
        x = model.fast_embeddings(a)
        codebooks.append(a)

    return torch.stack(codebooks, dim=0)


def decode_one_token_naive(
    model: NaiveTransformer,
    x: torch.Tensor,
    input_pos: torch.Tensor,
    previous_tokens: torch.Tensor = None,
    **sampling_kwargs,
) -> torch.Tensor:
    x = model.forward_generate(x, input_pos)

    codebooks = [
        sample(
            x.token_logits,
            previous_tokens=None,  # Disable repetition penalty for the token codebook
            **sampling_kwargs,
        )[0]
    ]

    for i in range(model.config.num_codebooks):
        codebooks.append(
            sample(
                x.codebook_logits[:, :, i],
                previous_tokens=(
                    previous_tokens[i + 1] if previous_tokens is not None else None
                ),
                **sampling_kwargs,
            )[0]
        )

    return torch.stack(codebooks, dim=0)


def decode_n_tokens(
    model: NaiveTransformer,
    cur_token: torch.Tensor,
    input_pos: torch.Tensor,
    num_new_tokens: int,
    eos_token_id: int = 2,
    im_end_id: int = 4,
    decode_one_token=decode_one_token_naive,
    **sampling_kwargs,
):
    previous_tokens = torch.zeros(
        (model.config.num_codebooks + 1, model.config.max_seq_len),
        dtype=torch.int,
        device=cur_token.device,
    )

    for i in tqdm(range(num_new_tokens)):
        # We need to get windowed repeat penalty
        win_size = 16
        if i < win_size:
            window = previous_tokens[:, :win_size]
        else:
            window = previous_tokens[:, i - win_size : i]

        with torch.backends.cuda.sdp_kernel(
            enable_flash=False, enable_mem_efficient=False, enable_math=True
        ):  # Actually better for Inductor to codegen attention here
            next_token = decode_one_token(
                model=model,
                x=cur_token,
                input_pos=input_pos,
                previous_tokens=window,
                **sampling_kwargs,
            )

        input_pos += 1
        cur_token = next_token.view(1, model.config.num_codebooks + 1, -1)
        previous_tokens[:, i : i + 1] = next_token.view(
            model.config.num_codebooks + 1, -1
        )

        if (
            cur_token[0, 0, -1] == eos_token_id
            or cur_token[0, 0, -1] == im_end_id
            or (cur_token[0, 1:, -1] == CODEBOOK_EOS_TOKEN_ID).any()
        ):
            break

    return previous_tokens[:, : i + 1]


@torch.no_grad()
@torch.inference_mode()
def generate(
    *,
    model: NaiveTransformer,
    prompt: torch.Tensor,
    max_new_tokens: int,
    eos_token_id: int = 2,
    im_end_id: int = 4,
    decode_one_token=decode_one_token_naive,
    **sampling_kwargs,
) -> torch.Tensor:
    """
    Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
    """

    # create an empty tensor of the expected final shape and fill in the current tokens
    T = prompt.size(1)

    if max_new_tokens:
        if T + max_new_tokens > model.config.max_seq_len:
            max_new_tokens = model.config.max_seq_len - T
            logger.info(f"Truncating max_new_tokens to {max_new_tokens}")

        T_new = T + max_new_tokens
    else:
        T_new = model.config.max_seq_len
        max_new_tokens = T_new - T

    device, dtype = prompt.device, prompt.dtype
    with torch.device(device):
        model.setup_caches(
            max_batch_size=1, max_seq_len=T_new, dtype=next(model.parameters()).dtype
        )

    codebook_dim = 1 + model.config.num_codebooks
    # create an empty tensor of the expected final shape and fill in the current tokens
    empty = torch.empty((codebook_dim, T_new), dtype=dtype, device=device)
    empty[:, :T] = prompt
    seq = empty
    input_pos = torch.arange(0, T, device=device)

    # Use non-accelerated version for now, to avoid compilation overhead
    prefill_decode = (
        decode_one_token_naive
        if isinstance(model, NaiveTransformer)
        else decode_one_token_ar
    )
    next_token = prefill_decode(
        model, prompt.view(1, codebook_dim, -1), input_pos, **sampling_kwargs
    )
    seq[:, T : T + 1] = next_token

    input_pos = torch.tensor([T], device=device, dtype=torch.int)
    x = decode_n_tokens(
        model,
        next_token.view(1, codebook_dim, -1),
        input_pos,
        max_new_tokens - 1,
        eos_token_id=eos_token_id,
        im_end_id=im_end_id,
        decode_one_token=decode_one_token,
        **sampling_kwargs,
    )
    # x = torch.cat(generated_tokens, dim=1)
    seq = seq[:, : T + 1 + x.size(1)]
    seq[:, T + 1 :] = x

    return seq


def encode_tokens(
    tokenizer,
    string,
    bos=True,
    device="cuda",
    prompt_tokens=None,
    speaker=None,
    num_codebooks=4,
):
    string = clean_text(string)

    if speaker is None:
        speaker = "assistant"

    string = (
        f"<|im_start|>user<|im_sep|>{string}<|im_end|><|im_start|>{speaker}<|im_sep|>"
    )
    if bos:
        string = f"<|begin_of_sequence|>{string}"

    new_tokens = tokenizer.encode(
        string,
        add_special_tokens=False,
        max_length=10**6,
        truncation=False,
    )
    tokens = torch.tensor([new_tokens], dtype=torch.int, device=device)

    # Codebooks
    zeros = (
        torch.ones((num_codebooks, tokens.size(1)), dtype=torch.int, device=device)
        * CODEBOOK_PAD_TOKEN_ID
    )
    prompt = torch.cat((tokens, zeros), dim=0)

    if prompt_tokens is None:
        return prompt

    # Get prompt tokens
    if prompt_tokens.ndim == 3:
        assert (
            prompt_tokens.shape[0] == 1
        ), f"3 dim prompt tokens should have shape (1, num_codebooks, seq_len)"
        prompt_tokens = prompt_tokens[0]

    assert prompt_tokens.ndim == 2
    data = prompt_tokens + 2

    if prompt_tokens.shape[0] > num_codebooks:
        logger.warning(
            f"Prompt tokens shape {prompt_tokens.shape} is larger than num_codebooks {num_codebooks}, getting first {num_codebooks} codebooks"
        )
        data = data[:num_codebooks]

    # Add eos token for each codebook
    data = torch.cat(
        (
            data,
            torch.ones((data.size(0), 1), dtype=torch.int, device=device)
            * CODEBOOK_EOS_TOKEN_ID,
        ),
        dim=1,
    )

    # Since 1.0, we use <|semantic|>
    s0_token_id = tokenizer.convert_tokens_to_ids("<|semantic|>")
    end_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
    main_token_ids = (
        torch.ones((1, data.size(1)), dtype=torch.int, device=device) * s0_token_id
    )
    main_token_ids[0, -1] = end_token_id

    data = torch.cat((main_token_ids, data), dim=0)
    prompt = torch.cat((prompt, data), dim=1)

    return prompt


def load_model(
    config_name, checkpoint_path, device, precision, max_length, compile=False
):
    hydra.core.global_hydra.GlobalHydra.instance().clear()
    with initialize(version_base="1.3", config_path="../../fish_speech/configs/model"):
        cfg = compose(
            config_name=config_name, overrides=[f"config.max_seq_len={max_length}"]
        )

    model: Union[NaiveTransformer, DualARTransformer] = instantiate(cfg)

    if "int8" in str(checkpoint_path):
        logger.info("Using int8 weight-only quantization!")
        from quantize import WeightOnlyInt8QuantHandler

        simple_quantizer = WeightOnlyInt8QuantHandler(model)
        model = simple_quantizer.convert_for_runtime()

    if "int4" in str(checkpoint_path):
        logger.info("Using int4 quantization!")
        path_comps = checkpoint_path.name.split(".")
        assert path_comps[-2].startswith("g")
        groupsize = int(path_comps[-2][1:])
        from quantize import WeightOnlyInt4QuantHandler

        simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
        model = simple_quantizer.convert_for_runtime()

    checkpoint = torch.load(str(checkpoint_path), map_location="cpu")
    if "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

    if any(k.startswith("model.") for k in checkpoint):
        checkpoint = {
            k.replace("model.", ""): v
            for k, v in checkpoint.items()
            if k.startswith("model.")
        }

    model.load_state_dict(checkpoint, assign=True)

    model = model.to(device=device, dtype=precision)
    logger.info("Restored model from checkpoint")

    if isinstance(model, DualARTransformer):
        decode_one_token = decode_one_token_ar
        logger.info("Using DualARTransformer")
    else:
        decode_one_token = decode_one_token_naive
        logger.info("Using NaiveTransformer")

    if compile:
        logger.info("Compiling function...")
        decode_one_token = torch.compile(
            decode_one_token, mode="reduce-overhead", fullgraph=True
        )

    return model.eval(), decode_one_token


def split_text(text, min_length):
    text = clean_text(text)
    segments = []
    curr = ""
    for char in text:
        curr += char
        if char not in [".", ",", "!", "?"]:
            continue

        if len(curr) >= min_length:
            segments.append(curr)
            curr = ""

    if curr:
        segments.append(curr)

    return segments


def generate_long(
    *,
    model,
    tokenizer: callable,
    device: str | torch.device,
    decode_one_token: callable,
    text: str,
    num_samples: int = 1,
    max_new_tokens: int = 0,
    top_k: int = None,
    top_p: int = 0.7,
    repetition_penalty: float = 1.5,
    temperature: float = 0.7,
    compile: bool = False,
    iterative_prompt: bool = True,
    max_length: int = 2048,
    chunk_length: int = 30,
    speaker: Optional[str] = None,
    prompt_text: Optional[str] = None,
    prompt_tokens: Optional[torch.Tensor] = None,
    is_streaming: bool = False,
):
    model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)
    im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")

    use_prompt = prompt_text is not None and prompt_tokens is not None
    encoded = []
    texts = split_text(text, chunk_length) if iterative_prompt else [text]

    if use_prompt:
        encoded.append(
            encode_tokens(
                tokenizer,
                prompt_text,
                prompt_tokens=prompt_tokens,
                bos=True,
                device=device,
                speaker=speaker,
                num_codebooks=model.config.num_codebooks,
            )
        )

    for idx, text in enumerate(texts):
        encoded.append(
            encode_tokens(
                tokenizer,
                string=text,
                bos=idx == 0 and not use_prompt,
                device=device,
                speaker=speaker,
                num_codebooks=model.config.num_codebooks,
            )
        )
        logger.info(f"Encoded text: {text}")

    for sample_idx in range(num_samples):
        torch.cuda.synchronize()
        global_encoded = []
        all_codes = []
        seg_idx = 0

        if use_prompt:
            seg_idx = 1
            global_encoded.append(encoded[0])

        while seg_idx < len(encoded):
            logger.info(
                f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}"
            )

            seg = encoded[seg_idx]
            global_encoded.append(seg)

            lengths = reversed([seg.size(1) for seg in global_encoded])

            # Pick last 2000 tokens
            count = 0
            for i, length in enumerate(lengths):
                count += length
                if count + length > max_length - 1024:
                    break

            if i != 0 and i % 2 == 0:
                i -= 1

            # Rotate the list, always make sure first segment is included to avoid drift
            if i < len(global_encoded) - 2:
                partial_encoded = global_encoded[:2] + global_encoded[-i:]
            else:
                partial_encoded = global_encoded

            cat_encoded = torch.cat(partial_encoded, dim=1)
            prompt_length = cat_encoded.size(1)

            t0 = time.perf_counter()
            y = generate(
                model=model,
                prompt=cat_encoded,
                max_new_tokens=max_new_tokens,
                eos_token_id=tokenizer.eos_token_id,
                im_end_id=im_end_id,
                decode_one_token=decode_one_token,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
            )

            if sample_idx == 0 and seg_idx == 0 and compile:
                logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")

            torch.cuda.synchronize()
            t = time.perf_counter() - t0

            tokens_generated = y.size(1) - prompt_length
            tokens_sec = tokens_generated / t
            logger.info(
                f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec"
            )
            logger.info(
                f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s"
            )
            logger.info(
                f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB"
            )

            # Put the generated tokens
            # since there is <im_end> and <eos> tokens, we remove last 2 tokens
            codes = y[1:, prompt_length:-2].clone()

            codes = codes - 2
            assert (codes >= 0).all(), f"Negative code found"

            decoded = y[:, prompt_length:-1].clone()
            if decoded[0, -1] != im_end_id:  # <im_end>
                val = [[im_end_id]] + [[CODEBOOK_EOS_TOKEN_ID]] * (decoded.size(0) - 1)
                decoded = torch.cat(
                    (decoded, torch.tensor(val, device=device, dtype=torch.int)), dim=1
                )

            # But for global encoding, we should keep the <im_end> token
            global_encoded.append(decoded)

            if is_streaming:
                assert (codes >= 0).all(), f"Negative code found: {codes}"
                yield codes
            else:
                all_codes.append(codes)

            seg_idx += 1

        if is_streaming:
            # This indicates the end of the current sample
            yield None
        else:
            all_codes = torch.cat(all_codes, dim=1)
            assert (all_codes >= 0).all(), f"Negative code found: {codes}"
            yield all_codes


def launch_thread_safe_queue(
    config_name,
    checkpoint_path,
    device,
    precision,
    max_length,
    compile=False,
):
    input_queue = queue.Queue()

    def worker():
        model, decode_one_token = load_model(
            config_name, checkpoint_path, device, precision, max_length, compile=compile
        )

        while True:
            item = input_queue.get()
            if item is None:
                break

            kwargs = item["request"]
            event = item["event"]

            try:
                item["success"] = True
                item["response"] = list(
                    generate_long(
                        model=model, decode_one_token=decode_one_token, **kwargs
                    )
                )
            except Exception as e:
                item["success"] = False
                item["response"] = e

            event.set()

    threading.Thread(target=worker, daemon=True).start()

    return input_queue


@click.command()
@click.option(
    "--text",
    type=str,
    default="你说的对, 但是原神是一款由米哈游自主研发的开放世界手游.",
)
@click.option("--prompt-text", type=str, default=None)
@click.option(
    "--prompt-tokens", type=click.Path(path_type=Path, exists=True), default=None
)
@click.option("--num-samples", type=int, default=1)
@click.option("--max-new-tokens", type=int, default=0)
@click.option("--top-k", type=int, default=None)
@click.option("--top-p", type=float, default=0.7)
@click.option("--repetition-penalty", type=float, default=1.5)
@click.option("--temperature", type=float, default=0.7)
@click.option(
    "--checkpoint-path",
    type=click.Path(path_type=Path, exists=True),
    default="results/text2semantic_400m_finetune/step_000002000.pth",
)
@click.option("--config-name", type=str, default="dual_ar_8_codebook_small")
@click.option("--tokenizer", type=str, default="fishaudio/fish-speech-1")
@click.option("--compile/--no-compile", default=False)
@click.option("--seed", type=int, default=42)
@click.option("--speaker", type=str, default=None)
@click.option("--half/--no-half", default=False)
@click.option("--iterative-prompt/--no-iterative-prompt", default=True)
@click.option("--max-length", type=int, default=2048)
@click.option("--chunk-length", type=int, default=30)
def main(
    text: str,
    prompt_text: Optional[str],
    prompt_tokens: Optional[Path],
    num_samples: int,
    max_new_tokens: int,
    top_k: int,
    top_p: int,
    repetition_penalty: float,
    temperature: float,
    checkpoint_path: Path,
    config_name: str,
    tokenizer: str,
    compile: bool,
    seed: int,
    speaker: Optional[str],
    half: bool,
    iterative_prompt: bool,
    max_length: int,
    chunk_length: int,
) -> None:
    device = "cuda"

    precision = torch.half if half else torch.bfloat16

    logger.info("Loading model ...")
    t0 = time.time()
    model, decode_one_token = load_model(
        config_name, checkpoint_path, device, precision, max_length, compile=compile
    )
    torch.cuda.synchronize()
    logger.info(f"Time to load model: {time.time() - t0:.02f} seconds")

    prompt_tokens = (
        torch.from_numpy(np.load(prompt_tokens)).to(device)
        if prompt_tokens is not None
        else None
    )

    tokenizer = AutoTokenizer.from_pretrained(tokenizer)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    generator = generate_long(
        model=model,
        device=device,
        decode_one_token=decode_one_token,
        text=text,
        num_samples=num_samples,
        max_new_tokens=max_new_tokens,
        top_k=top_k,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        temperature=temperature,
        tokenizer=tokenizer,
        compile=compile,
        speaker=speaker,
        iterative_prompt=iterative_prompt,
        max_length=max_length,
        chunk_length=chunk_length,
        prompt_text=prompt_text,
        prompt_tokens=prompt_tokens,
    )

    for idx, codes in enumerate(generator):
        np.save(f"codes_{idx}.npy", codes.cpu().numpy())
        logger.info(f"Saved codes to codes_{idx}.npy")


if __name__ == "__main__":
    main()