Spaces:
Running
on
A10G
Running
on
A10G
File size: 18,072 Bytes
82d5f8b 75e9ff1 89518a7 8a9db1e 81e0a1c 315fa0c 82d5f8b b2eb230 82d5f8b 0a3525d 12b4214 0a3525d 6921279 0a3525d abfe079 dea01c6 abfe079 0a3525d b2eb230 69e8a46 b2eb230 69e8a46 b2eb230 69e8a46 0a3525d b2eb230 0a3525d b2eb230 469209d 0a3525d b2eb230 0a3525d 69e8a46 0a3525d 9bfe4ad b2eb230 0a3525d 12b4214 0a3525d 12b4214 a53df75 0a3525d 12b4214 b2eb230 45eadd5 0a3525d 45eadd5 0a3525d b2eb230 0a3525d 12b4214 69e8a46 b2eb230 0a3525d b2eb230 0a3525d 69e8a46 12b4214 69e8a46 75e9ff1 69e8a46 b2eb230 75e9ff1 69e8a46 b2eb230 69e8a46 b2eb230 69e8a46 b2eb230 69e8a46 b2eb230 69e8a46 b2eb230 69e8a46 0a3525d 69e8a46 0a3525d b2eb230 69e8a46 b2eb230 69e8a46 0a3525d b2eb230 69e8a46 b2eb230 7d47bb6 b2eb230 7d47bb6 b2eb230 7d47bb6 b2eb230 2dc5ce9 b2eb230 2dc5ce9 9bd8a0b b2eb230 a4dbd99 b2eb230 9bd8a0b b2eb230 0a3525d 69e8a46 b2eb230 69e8a46 b2eb230 69e8a46 b2eb230 0a3525d b2eb230 0a3525d 69e8a46 b2eb230 69e8a46 b2eb230 45eadd5 b2eb230 45eadd5 b2eb230 2dc5ce9 b2eb230 2dc5ce9 9bd8a0b 2dc5ce9 9bd8a0b 2dc5ce9 b2eb230 0a3525d 69e8a46 0a3525d 69e8a46 9bd8a0b 0a3525d b2eb230 0a3525d b2eb230 662d788 0a3525d b2eb230 0a3525d b2eb230 0a3525d b2eb230 0a3525d 69e8a46 0a3525d b2eb230 0a3525d 69e8a46 0a3525d 574a682 12b4214 69e8a46 0a3525d 12b4214 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 b2eb230 0a3525d 69e8a46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
import os
import queue
from huggingface_hub import snapshot_download
import hydra
import numpy as np
import wave
import io
import pyrootutils
import gc
# Download if not exists
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(repo_id="fishaudio/fish-speech-1.5", local_dir="./checkpoints/fish-speech-1.5")
print("All checkpoints downloaded")
import html
import os
import threading
from argparse import ArgumentParser
from pathlib import Path
from functools import partial
import gradio as gr
import librosa
import torch
import torchaudio
torchaudio.set_audio_backend("soundfile")
from loguru import logger
from transformers import AutoTokenizer
from fish_speech.i18n import i18n
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText
from fish_speech.utils import autocast_exclude_mps, set_seed
from tools.api import decode_vq_tokens, encode_reference
from tools.file import AUDIO_EXTENSIONS, list_files
from tools.llama.generate import (
GenerateRequest,
GenerateResponse,
WrappedGenerateResponse,
launch_thread_safe_queue,
)
from tools.vqgan.inference import load_model as load_decoder_model
from tools.schema import (
GLOBAL_NUM_SAMPLES,
ASRPackRequest,
ServeASRRequest,
ServeASRResponse,
ServeASRSegment,
ServeAudioPart,
ServeForwardMessage,
ServeMessage,
ServeRequest,
ServeResponse,
ServeStreamDelta,
ServeStreamResponse,
ServeTextPart,
ServeTimedASRResponse,
ServeTTSRequest,
ServeVQGANDecodeRequest,
ServeVQGANDecodeResponse,
ServeVQGANEncodeRequest,
ServeVQGANEncodeResponse,
ServeVQPart,
ServeReferenceAudio
)
# Make einx happy
os.environ["EINX_FILTER_TRACEBACK"] = "false"
HEADER_MD = """# Fish Speech
## The demo in this space is version 1.5, Please check [Fish Audio](https://fish.audio) for the best model.
## 该 Demo 为 Fish Speech 1.5 版本, 请在 [Fish Audio](https://fish.audio) 体验最新 DEMO.
A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).
由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成.
You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.5).
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1.5) 找到模型.
Related code and weights are released under CC BY-NC-SA 4.0 License.
相关代码,权重使用 CC BY-NC-SA 4.0 许可证发布.
We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.
The model running in this WebUI is Fish Speech V1.5 Medium.
在此 WebUI 中运行的模型是 Fish Speech V1.5 Medium.
"""
TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本."""
try:
import spaces
GPU_DECORATOR = spaces.GPU
except ImportError:
def GPU_DECORATOR(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
def build_html_error_message(error):
return f"""
<div style="color: red;
font-weight: bold;">
{html.escape(str(error))}
</div>
"""
@GPU_DECORATOR
@torch.inference_mode()
def inference(req: ServeTTSRequest):
# Parse reference audio aka prompt
refs = req.references
prompt_tokens = [
encode_reference(
decoder_model=decoder_model,
reference_audio=ref.audio,
enable_reference_audio=True,
)
for ref in refs
]
prompt_texts = [ref.text for ref in refs]
if req.seed is not None:
set_seed(req.seed)
logger.warning(f"set seed: {req.seed}")
# LLAMA Inference
request = dict(
device=decoder_model.device,
max_new_tokens=req.max_new_tokens,
text=(
req.text
if not req.normalize
else ChnNormedText(raw_text=req.text).normalize()
),
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
temperature=req.temperature,
compile=args.compile,
iterative_prompt=req.chunk_length > 0,
chunk_length=req.chunk_length,
max_length=4096,
prompt_tokens=prompt_tokens,
prompt_text=prompt_texts,
)
response_queue = queue.Queue()
llama_queue.put(
GenerateRequest(
request=request,
response_queue=response_queue,
)
)
segments = []
while True:
result: WrappedGenerateResponse = response_queue.get()
if result.status == "error":
yield None, None, build_html_error_message(result.response)
break
result: GenerateResponse = result.response
if result.action == "next":
break
with autocast_exclude_mps(
device_type=decoder_model.device.type, dtype=args.precision
):
fake_audios = decode_vq_tokens(
decoder_model=decoder_model,
codes=result.codes,
)
fake_audios = fake_audios.float().cpu().numpy()
segments.append(fake_audios)
if len(segments) == 0:
return (
None,
None,
build_html_error_message(
i18n("No audio generated, please check the input text.")
),
)
# No matter streaming or not, we need to return the final audio
audio = np.concatenate(segments, axis=0)
yield None, (decoder_model.spec_transform.sample_rate, audio), None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
n_audios = 4
global_audio_list = []
global_error_list = []
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
buffer = io.BytesIO()
with wave.open(buffer, "wb") as wav_file:
wav_file.setnchannels(channels)
wav_file.setsampwidth(bit_depth // 8)
wav_file.setframerate(sample_rate)
wav_header_bytes = buffer.getvalue()
buffer.close()
return wav_header_bytes
def normalize_text(user_input, use_normalization):
if use_normalization:
return ChnNormedText(raw_text=user_input).normalize()
else:
return user_input
def build_app():
with gr.Blocks(theme=gr.themes.Base()) as app:
gr.Markdown(HEADER_MD)
# Use light theme by default
app.load(
None,
None,
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
% args.theme,
)
# Inference
with gr.Row():
with gr.Column(scale=3):
text = gr.Textbox(
label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
)
refined_text = gr.Textbox(
label=i18n("Realtime Transform Text"),
placeholder=i18n(
"Normalization Result Preview (Currently Only Chinese)"
),
lines=5,
interactive=False,
)
with gr.Row():
normalize = gr.Checkbox(
label=i18n("Text Normalization"),
value=False,
)
with gr.Row():
with gr.Column():
with gr.Tab(label=i18n("Advanced Config")):
with gr.Row():
chunk_length = gr.Slider(
label=i18n("Iterative Prompt Length, 0 means off"),
minimum=0,
maximum=300,
value=200,
step=8,
)
max_new_tokens = gr.Slider(
label=i18n(
"Maximum tokens per batch"
),
minimum=512,
maximum=2048,
value=1024,
step=64,
)
with gr.Row():
top_p = gr.Slider(
label="Top-P",
minimum=0.6,
maximum=0.9,
value=0.7,
step=0.01,
)
repetition_penalty = gr.Slider(
label=i18n("Repetition Penalty"),
minimum=1,
maximum=1.5,
value=1.2,
step=0.01,
)
with gr.Row():
temperature = gr.Slider(
label="Temperature",
minimum=0.6,
maximum=0.9,
value=0.7,
step=0.01,
)
seed = gr.Number(
label="Seed",
info="0 means randomized inference, otherwise deterministic",
value=0,
)
with gr.Tab(label=i18n("Reference Audio")):
with gr.Row():
gr.Markdown(
i18n(
"15 to 60 seconds of reference audio, useful for specifying speaker."
)
)
with gr.Row():
# Add dropdown for selecting example audio files
example_audio_files = [f for f in os.listdir("examples") if f.endswith(".wav")]
example_audio_dropdown = gr.Dropdown(
label="Select Example Audio",
choices=[""] + example_audio_files,
value=""
)
with gr.Row():
use_memory_cache = gr.Radio(
label=i18n("Use Memory Cache"),
choices=["never"],
value="never",
)
with gr.Row():
reference_audio = gr.Audio(
label=i18n("Reference Audio"),
type="filepath",
)
with gr.Row():
reference_text = gr.Textbox(
label=i18n("Reference Text"),
lines=1,
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
value="",
)
with gr.Column(scale=3):
with gr.Row():
error = gr.HTML(
label=i18n("Error Message"),
visible=True,
)
with gr.Row():
audio = gr.Audio(
label=i18n("Generated Audio"),
type="numpy",
interactive=False,
visible=True,
)
with gr.Row():
with gr.Column(scale=3):
generate = gr.Button(
value="\U0001F3A7 " + i18n("Generate"), variant="primary"
)
text.input(
fn=normalize_text, inputs=[text, normalize], outputs=[refined_text]
)
def inference_wrapper(
text,
normalize,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
seed,
use_memory_cache,
):
print(
"call inference wrapper",
text,
normalize,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
seed,
use_memory_cache
)
references = []
if reference_audio:
# 将文件路径转换为字节
with open(reference_audio, 'rb') as audio_file:
audio_bytes = audio_file.read()
references = [
ServeReferenceAudio(audio=audio_bytes, text=reference_text)
]
req = ServeTTSRequest(
text=text,
normalize=normalize,
reference_id=None,
references=references,
max_new_tokens=max_new_tokens,
chunk_length=chunk_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
temperature=temperature,
seed=int(seed) if seed else None,
use_memory_cache=use_memory_cache,
)
for result in inference(req):
if result[2]: # Error message
return None, result[2]
elif result[1]: # Audio data
return result[1], None
return None, i18n("No audio generated")
def select_example_audio(audio_file):
if audio_file:
audio_path = os.path.join("examples", audio_file)
lab_file = os.path.splitext(audio_file)[0] + ".lab"
lab_path = os.path.join("examples", lab_file)
if os.path.exists(lab_path):
with open(lab_path, "r", encoding="utf-8") as f:
lab_content = f.read().strip()
else:
lab_content = ""
return audio_path, lab_content
return None, ""
# Connect the dropdown to update reference audio and text
example_audio_dropdown.change(
fn=select_example_audio,
inputs=[example_audio_dropdown],
outputs=[reference_audio, reference_text]
)
# Submit
generate.click(
inference_wrapper,
[
refined_text,
normalize,
reference_audio,
reference_text,
max_new_tokens,
chunk_length,
top_p,
repetition_penalty,
temperature,
seed,
use_memory_cache,
],
[audio, error],
concurrency_limit=1,
)
return app
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--llama-checkpoint-path",
type=Path,
default="checkpoints/fish-speech-1.5",
)
parser.add_argument(
"--decoder-checkpoint-path",
type=Path,
default="checkpoints/fish-speech-1.5/firefly-gan-vq-fsq-8x1024-21hz-generator.pth",
)
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--half", action="store_true")
parser.add_argument("--compile", action="store_true",default=True)
parser.add_argument("--max-gradio-length", type=int, default=0)
parser.add_argument("--theme", type=str, default="light")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
args.precision = torch.half if args.half else torch.bfloat16
logger.info("Loading Llama model...")
llama_queue = launch_thread_safe_queue(
checkpoint_path=args.llama_checkpoint_path,
device=args.device,
precision=args.precision,
compile=args.compile,
)
logger.info("Llama model loaded, loading VQ-GAN model...")
decoder_model = load_decoder_model(
config_name=args.decoder_config_name,
checkpoint_path=args.decoder_checkpoint_path,
device=args.device,
)
logger.info("Decoder model loaded, warming up...")
# Dry run to check if the model is loaded correctly and avoid the first-time latency
list(
inference(
ServeTTSRequest(
text="Hello world.",
references=[],
reference_id=None,
max_new_tokens=0,
chunk_length=200,
top_p=0.7,
repetition_penalty=1.5,
temperature=0.7,
emotion=None,
format="wav",
)
)
)
logger.info("Warming up done, launching the web UI...")
app = build_app()
app.launch(show_api=True)
|