PoTaTo721's picture
Update to V1.5
b2eb230
raw
history blame
6.77 kB
from typing import Any, Optional
import lightning as L
import torch
import torch.nn.functional as F
from lightning.pytorch.utilities.types import OptimizerLRScheduler
import fish_speech.utils as utils
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID
from fish_speech.models.text2semantic.llama import NaiveTransformer
log = utils.RankedLogger(__name__, rank_zero_only=True)
class TextToSemantic(L.LightningModule):
def __init__(
self,
model: NaiveTransformer,
optimizer: Any,
lr_scheduler: Any,
):
super().__init__()
self.model = model
self.optimizer_builder = optimizer
self.lr_scheduler_builder = lr_scheduler
def forward(self, x):
return self.model(x)
def on_save_checkpoint(self, checkpoint):
# Save only LoRA parameters
state_dict = checkpoint["state_dict"]
use_lora = any("lora" in name for name in state_dict.keys())
if not use_lora:
return
for name in list(state_dict.keys()):
if "lora" not in name:
state_dict.pop(name)
def configure_optimizers(self) -> OptimizerLRScheduler:
# Get weight decay parameters
weight_decay_parameters, other_parameters = [], []
for name, param in self.named_parameters():
if ".bias" in name or "norm.weight" in name or ".embeddings." in name:
other_parameters.append(param)
else:
weight_decay_parameters.append(param)
optimizer = self.optimizer_builder(
[
{"params": weight_decay_parameters},
{"params": other_parameters, "weight_decay": 0.0},
]
)
# Print the parameters and their weight decay
for i in optimizer.param_groups:
log.info(
f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters"
)
lr_scheduler = self.lr_scheduler_builder(optimizer)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"interval": "step",
},
}
# Copied from https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90
def get_batch_logps(
self,
logits: torch.FloatTensor,
labels: torch.LongTensor,
average_log_prob: bool = False,
) -> torch.FloatTensor:
"""Compute the log probabilities of the given labels under the given logits.
Args:
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size)
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size)
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
Returns:
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
"""
assert logits.shape[:-1] == labels.shape
labels = labels.clone()
loss_mask = labels != -100
# dummy token; we'll ignore the losses on these tokens later
labels[labels == -100] = 0
per_token_logps = torch.gather(
logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1)
).squeeze(-1)
if average_log_prob:
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
else:
return (per_token_logps * loss_mask).sum(-1)
def _step(self, batch, batch_idx, stage: str):
is_train = stage == "train"
if is_train:
# Key part to make lora work
# Otherwise the parameters are merged, which lead to incorrect gradients
self.model.train()
# Do positive and negative samples in the same batch to speed up training
labels = batch["labels"]
outputs = self.model(
inp=batch["inputs"],
key_padding_mask=batch["attention_masks"],
)
token_logits = outputs.token_logits
codebook_logits = outputs.codebook_logits
# Generate labels
base_loss = F.cross_entropy(
token_logits.view(-1, token_logits.size(-1)),
labels[:, 0].reshape(-1),
ignore_index=-100,
)
codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT
semantic_loss = F.cross_entropy(
codebook_logits.view(-1, codebook_logits.size(-1)),
codebook_labels.reshape(-1),
ignore_index=-100,
)
loss = base_loss + semantic_loss
self.log(
f"{stage}/loss",
loss,
on_step=is_train,
on_epoch=not is_train,
prog_bar=True,
logger=True,
sync_dist=not is_train,
)
self.log(
f"{stage}/base_loss",
base_loss,
on_step=is_train,
on_epoch=not is_train,
prog_bar=False,
logger=True,
sync_dist=not is_train,
)
self.log(
f"{stage}/semantic_loss",
semantic_loss,
on_step=is_train,
on_epoch=not is_train,
prog_bar=False,
logger=True,
sync_dist=not is_train,
)
# Top-5 accuracy
accuracy = self.get_accuracy(codebook_logits, codebook_labels)
self.log(
f"{stage}/top_5_accuracy",
accuracy,
on_step=is_train,
on_epoch=not is_train,
prog_bar=True,
logger=True,
sync_dist=not is_train,
)
return loss
def get_accuracy(self, logits, labels):
mask = (labels != -100) & (labels != CODEBOOK_PAD_TOKEN_ID)
if mask.sum() == 0:
return torch.tensor(0.0, device=logits.device)
_, indices = logits.topk(5, dim=-1)
correct = indices.eq(labels.unsqueeze(-1))
correct[~mask] = 0
correct = correct.sum()
accuracy = correct / mask.sum()
return accuracy
def training_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "val")