fish-speech-1 / tools /llama /generate.py
lengyue233's picture
Init hf space integration
0a3525d verified
raw
history blame
21.1 kB
import os
import time
from pathlib import Path
from typing import Optional, Tuple, Union
import click
import numpy as np
import torch
import torch._dynamo.config
import torch._inductor.config
from hydra import compose, initialize
from hydra.utils import instantiate
from loguru import logger
from tqdm import tqdm
from transformers import AutoTokenizer
from fish_speech.datasets.text import CODEBOOK_EOS_TOKEN_ID
from fish_speech.text.clean import clean_text
os.environ["TOKENIZERS_PARALLELISM"] = "false"
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
if hasattr(torch._inductor.config, "fx_graph_cache"):
# Experimental feature to reduce compilation times, will be on by default in future
torch._inductor.config.fx_graph_cache = True
from fish_speech.models.text2semantic.llama import DualARTransformer, NaiveTransformer
def multinomial_sample_one_no_sync(
probs_sort,
): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(
logits,
previous_tokens: Optional[torch.Tensor] = None,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[int] = None,
repetition_penalty: float = 1.0,
):
if previous_tokens is not None and repetition_penalty != 1.0:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=0, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=0, index=previous_tokens, src=score)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(
torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1
)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=0, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(
logits,
previous_tokens: Optional[torch.Tensor] = None,
**sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
probs = logits_to_probs(
logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs
)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def decode_one_token_ar(
model: DualARTransformer,
x: torch.Tensor,
input_pos: torch.Tensor,
previous_tokens: torch.Tensor = None,
**sampling_kwargs,
) -> torch.Tensor:
x = model.forward_generate(x, input_pos)
codebooks = [
sample(
x.logits,
previous_tokens=None, # Disable repetition penalty for the token codebook
**sampling_kwargs,
)[0]
]
x = x.hidden_states
# Cleanup the cache
for layer in model.fast_layers:
layer.attention.kv_cache.k_cache.fill_(0)
layer.attention.kv_cache.v_cache.fill_(0)
for codebook_idx in range(model.config.num_codebooks):
input_pos = torch.tensor([codebook_idx], device=x.device, dtype=torch.long)
logits = model.forward_generate_fast(x, input_pos)
a = sample(
logits,
previous_tokens=(
previous_tokens[codebook_idx + 1]
if previous_tokens is not None
else None
),
**sampling_kwargs,
)[0]
x = model.fast_embeddings(a)
codebooks.append(a)
return torch.stack(codebooks, dim=0)
def decode_one_token_naive(
model: NaiveTransformer,
x: torch.Tensor,
input_pos: torch.Tensor,
previous_tokens: torch.Tensor = None,
**sampling_kwargs,
) -> torch.Tensor:
x = model.forward_generate(x, input_pos)
codebooks = [
sample(
x.token_logits,
previous_tokens=None, # Disable repetition penalty for the token codebook
**sampling_kwargs,
)[0]
]
for i in range(model.config.num_codebooks):
codebooks.append(
sample(
x.codebook_logits[:, :, i],
previous_tokens=(
previous_tokens[i + 1] if previous_tokens is not None else None
),
**sampling_kwargs,
)[0]
)
return torch.stack(codebooks, dim=0)
def decode_n_tokens(
model: NaiveTransformer,
cur_token: torch.Tensor,
input_pos: torch.Tensor,
num_new_tokens: int,
eos_token_id: int = 2,
im_end_id: int = 4,
decode_one_token=decode_one_token_naive,
**sampling_kwargs,
):
previous_tokens = torch.zeros(
(model.config.num_codebooks + 1, model.config.max_seq_len),
dtype=torch.int,
device=cur_token.device,
)
for i in tqdm(range(num_new_tokens)):
# We need to get windowed repeat penalty
win_size = 16
if i < win_size:
window = previous_tokens[:, :win_size]
else:
window = previous_tokens[:, i - win_size : i]
with torch.backends.cuda.sdp_kernel(
enable_flash=False, enable_mem_efficient=False, enable_math=True
): # Actually better for Inductor to codegen attention here
next_token = decode_one_token(
model=model,
x=cur_token,
input_pos=input_pos,
previous_tokens=window,
**sampling_kwargs,
)
input_pos += 1
cur_token = next_token.view(1, model.config.num_codebooks + 1, -1)
previous_tokens[:, i : i + 1] = next_token.view(
model.config.num_codebooks + 1, -1
)
if (
cur_token[0, 0, -1] == eos_token_id
or cur_token[0, 0, -1] == im_end_id
or (cur_token[0, 1:, -1] == CODEBOOK_EOS_TOKEN_ID).any()
):
break
return previous_tokens[:, : i + 1]
@torch.no_grad()
@torch.inference_mode()
def generate(
*,
model: NaiveTransformer,
prompt: torch.Tensor,
max_new_tokens: int,
eos_token_id: int = 2,
im_end_id: int = 4,
decode_one_token=decode_one_token_naive,
**sampling_kwargs,
) -> torch.Tensor:
"""
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
"""
# create an empty tensor of the expected final shape and fill in the current tokens
T = prompt.size(1)
if max_new_tokens:
if T + max_new_tokens > model.config.max_seq_len:
max_new_tokens = model.config.max_seq_len - T
logger.info(f"Truncating max_new_tokens to {max_new_tokens}")
T_new = T + max_new_tokens
else:
T_new = model.config.max_seq_len
max_new_tokens = T_new - T
device, dtype = prompt.device, prompt.dtype
with torch.device(device):
model.setup_caches(
max_batch_size=1, max_seq_len=T_new, dtype=next(model.parameters()).dtype
)
codebook_dim = 1 + model.config.num_codebooks
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty((codebook_dim, T_new), dtype=dtype, device=device)
empty[:, :T] = prompt
seq = empty
input_pos = torch.arange(0, T, device=device)
# Use non-accelerated version for now, to avoid compilation overhead
prefill_decode = (
decode_one_token_naive
if isinstance(model, NaiveTransformer)
else decode_one_token_ar
)
next_token = prefill_decode(
model, prompt.view(1, codebook_dim, -1), input_pos, **sampling_kwargs
)
seq[:, T : T + 1] = next_token
input_pos = torch.tensor([T], device=device, dtype=torch.int)
x = decode_n_tokens(
model,
next_token.view(1, codebook_dim, -1),
input_pos,
max_new_tokens - 1,
eos_token_id=eos_token_id,
im_end_id=im_end_id,
decode_one_token=decode_one_token,
**sampling_kwargs,
)
# x = torch.cat(generated_tokens, dim=1)
seq = seq[:, : T + 1 + x.size(1)]
seq[:, T + 1 :] = x
return seq
def encode_tokens(
tokenizer,
string,
bos=True,
device="cuda",
prompt_tokens=None,
speaker=None,
num_codebooks=4,
):
string = clean_text(string)
if speaker is not None:
string = f"[SPK: {speaker}] {string}"
string = (
f"<|im_start|>user<|im_sep|>{string}<|im_end|><|im_start|>assistant<|im_sep|>"
)
if bos:
string = f"<|begin_of_sequence|>{string}"
new_tokens = tokenizer.encode(
string,
add_special_tokens=False,
max_length=10**6,
truncation=False,
)
tokens = torch.tensor([new_tokens], dtype=torch.int, device=device)
# Codebooks
zeros = torch.zeros((num_codebooks, tokens.size(1)), dtype=torch.int, device=device)
prompt = torch.cat((tokens, zeros), dim=0)
if prompt_tokens is None:
return prompt
# Get prompt tokens
if prompt_tokens.ndim == 3:
assert (
prompt_tokens.shape[0] == 1
), f"3 dim prompt tokens should have shape (1, num_codebooks, seq_len)"
prompt_tokens = prompt_tokens[0]
assert prompt_tokens.ndim == 2
data = prompt_tokens + 2
if prompt_tokens.shape[0] > num_codebooks:
logger.warning(
f"Prompt tokens shape {prompt_tokens.shape} is larger than num_codebooks {num_codebooks}, getting first {num_codebooks} codebooks"
)
data = data[:num_codebooks]
# Since 1.0, we use <|semantic|>
s0_token_id = tokenizer.convert_tokens_to_ids("<|semantic|>")
main_token_ids = torch.tensor(
[[s0_token_id] * data.size(1)],
dtype=torch.int,
device=device,
)
data = torch.cat((main_token_ids, data), dim=0)
prompt = torch.cat((prompt, data), dim=1)
return prompt
def load_model(
config_name, checkpoint_path, device, precision, max_length, compile=False
):
with initialize(version_base="1.3", config_path="../../fish_speech/configs/model"):
cfg = compose(
config_name=config_name, overrides=[f"config.max_seq_len={max_length}"]
)
model: Union[NaiveTransformer, DualARTransformer] = instantiate(cfg)
if "int8" in str(checkpoint_path):
logger.info("Using int8 weight-only quantization!")
from quantize import WeightOnlyInt8QuantHandler
simple_quantizer = WeightOnlyInt8QuantHandler(model)
model = simple_quantizer.convert_for_runtime()
if "int4" in str(checkpoint_path):
logger.info("Using int4 quantization!")
path_comps = checkpoint_path.name.split(".")
assert path_comps[-2].startswith("g")
groupsize = int(path_comps[-2][1:])
from quantize import WeightOnlyInt4QuantHandler
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
model = simple_quantizer.convert_for_runtime()
checkpoint = torch.load(str(checkpoint_path), map_location="cpu")
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
if any(k.startswith("model.") for k in checkpoint):
checkpoint = {
k.replace("model.", ""): v
for k, v in checkpoint.items()
if k.startswith("model.")
}
model.load_state_dict(checkpoint, assign=True)
model = model.to(device=device, dtype=precision)
logger.info("Restored model from checkpoint")
if isinstance(model, DualARTransformer):
decode_one_token = decode_one_token_ar
logger.info("Using DualARTransformer")
else:
decode_one_token = decode_one_token_naive
logger.info("Using NaiveTransformer")
if compile:
logger.info("Compiling function...")
decode_one_token = torch.compile(
decode_one_token, mode="reduce-overhead", fullgraph=True
)
return model.eval(), decode_one_token
def split_text(text, min_length):
text = clean_text(text)
segments = []
curr = ""
for char in text:
curr += char
if char not in [".", ",", "!", "?"]:
continue
if len(curr) >= min_length:
segments.append(curr)
curr = ""
if curr:
segments.append(curr)
return segments
def generate_long(
*,
model,
tokenizer: callable,
device: str | torch.device,
decode_one_token: callable,
text: str,
num_samples: int = 1,
max_new_tokens: int = 0,
top_k: int = None,
top_p: int = 0.7,
repetition_penalty: float = 1.5,
temperature: float = 0.7,
compile: bool = False,
iterative_prompt: bool = True,
max_length: int = 2048,
chunk_length: int = 30,
speaker: Optional[str] = None,
prompt_text: Optional[str] = None,
prompt_tokens: Optional[torch.Tensor] = None,
):
model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)
im_end_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
use_prompt = prompt_text is not None and prompt_tokens is not None
encoded = []
texts = split_text(text, chunk_length) if iterative_prompt else [text]
for idx, text in enumerate(texts):
encoded.append(
encode_tokens(
tokenizer,
string=text,
bos=idx == 0 and not use_prompt,
device=device,
speaker=None,
num_codebooks=model.config.num_codebooks,
)
)
logger.info(f"Encoded text: {text}")
if use_prompt:
encoded_prompt = encode_tokens(
tokenizer,
prompt_text,
prompt_tokens=prompt_tokens,
bos=True,
device=device,
speaker=speaker,
num_codebooks=model.config.num_codebooks,
)
encoded[0] = torch.cat((encoded_prompt, encoded[0]), dim=1)
for sample_idx in range(num_samples):
torch.cuda.synchronize()
global_encoded = []
all_codes = []
seg_idx = 0
while seg_idx < len(encoded):
logger.info(
f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}"
)
seg = encoded[seg_idx]
global_encoded.append(seg)
lengths = reversed([seg.size(1) for seg in global_encoded])
# Pick last 2000 tokens
count = 0
for i, length in enumerate(lengths):
count += length
if count + length > max_length - 1024:
break
if i != 0 and i % 2 == 0:
i -= 1
# Rotate the list, always make sure first segment is included to avoid drift
if i < len(global_encoded) - 2:
partial_encoded = global_encoded[:2] + global_encoded[-i:]
else:
partial_encoded = global_encoded
cat_encoded = torch.cat(partial_encoded, dim=1)
prompt_length = cat_encoded.size(1)
t0 = time.perf_counter()
y = generate(
model=model,
prompt=cat_encoded,
max_new_tokens=max_new_tokens,
eos_token_id=tokenizer.eos_token_id,
im_end_id=im_end_id,
decode_one_token=decode_one_token,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
if sample_idx == 0 and seg_idx == 0 and compile:
logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
torch.cuda.synchronize()
t = time.perf_counter() - t0
tokens_generated = y.size(1) - prompt_length
tokens_sec = tokens_generated / t
logger.info(
f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec"
)
logger.info(
f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s"
)
logger.info(
f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB"
)
# Put the generated tokens
# since there is <im_end> and <eos> tokens, we remove last 2 tokens
codes = y[1:, prompt_length:-2].clone()
codes = codes - 2
if not (codes >= 0).all():
global_encoded.pop()
logger.warning(f"Negative code found: {codes}, retrying ...")
continue
decoded = y[:, prompt_length:-1].clone()
if decoded[0, -1] != im_end_id: # <im_end>
val = [[im_end_id]] + [[CODEBOOK_EOS_TOKEN_ID]] * (decoded.size(0) - 1)
decoded = torch.cat(
(decoded, torch.tensor(val, device=device, dtype=torch.int)), dim=1
)
# But for global encoding, we should keep the <im_end> token
global_encoded.append(decoded)
all_codes.append(codes)
seg_idx += 1
codes = torch.cat(all_codes, dim=1)
assert (codes >= 0).all(), f"Negative code found: {codes}"
yield codes
@click.command()
@click.option(
"--text",
type=str,
default="你说的对, 但是原神是一款由米哈游自主研发的开放世界手游.",
)
@click.option("--prompt-text", type=str, default=None)
@click.option(
"--prompt-tokens", type=click.Path(path_type=Path, exists=True), default=None
)
@click.option("--num-samples", type=int, default=1)
@click.option("--max-new-tokens", type=int, default=0)
@click.option("--top-k", type=int, default=None)
@click.option("--top-p", type=float, default=0.7)
@click.option("--repetition-penalty", type=float, default=1.5)
@click.option("--temperature", type=float, default=0.7)
@click.option(
"--checkpoint-path",
type=click.Path(path_type=Path, exists=True),
default="results/text2semantic_400m_finetune/step_000002000.pth",
)
@click.option("--config-name", type=str, default="dual_ar_8_codebook_small")
@click.option("--tokenizer", type=str, default="fishaudio/fish-speech-1")
@click.option("--compile/--no-compile", default=False)
@click.option("--seed", type=int, default=42)
@click.option("--speaker", type=str, default=None)
@click.option("--half/--no-half", default=False)
@click.option("--iterative-prompt/--no-iterative-prompt", default=True)
@click.option("--max-length", type=int, default=2048)
@click.option("--chunk-length", type=int, default=30)
def main(
text: str,
prompt_text: Optional[str],
prompt_tokens: Optional[Path],
num_samples: int,
max_new_tokens: int,
top_k: int,
top_p: int,
repetition_penalty: float,
temperature: float,
checkpoint_path: Path,
config_name: str,
tokenizer: str,
compile: bool,
seed: int,
speaker: Optional[str],
half: bool,
iterative_prompt: bool,
max_length: int,
chunk_length: int,
) -> None:
device = "cuda"
precision = torch.half if half else torch.bfloat16
logger.info("Loading model ...")
t0 = time.time()
model, decode_one_token = load_model(
config_name, checkpoint_path, device, precision, max_length, compile=compile
)
torch.cuda.synchronize()
logger.info(f"Time to load model: {time.time() - t0:.02f} seconds")
prompt_tokens = (
torch.from_numpy(np.load(prompt_tokens)).to(device)
if prompt_tokens is not None
else None
)
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
generator = generate_long(
model=model,
device=device,
decode_one_token=decode_one_token,
text=text,
num_samples=num_samples,
max_new_tokens=max_new_tokens,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
temperature=temperature,
tokenizer=tokenizer,
compile=compile,
speaker=speaker,
iterative_prompt=iterative_prompt,
max_length=max_length,
chunk_length=chunk_length,
prompt_text=prompt_text,
prompt_tokens=prompt_tokens,
)
for idx, codes in enumerate(generator):
np.save(f"codes_{idx}.npy", codes.cpu().numpy())
logger.info(f"Saved codes to codes_{idx}.npy")
if __name__ == "__main__":
main()