fish-speech-1 / tools /vqgan /inference.py
lengyue233's picture
Init hf space integration
0a3525d verified
raw
history blame
3.51 kB
from pathlib import Path
import click
import librosa
import numpy as np
import soundfile as sf
import torch
from hydra import compose, initialize
from hydra.utils import instantiate
from lightning import LightningModule
from loguru import logger
from omegaconf import OmegaConf
from fish_speech.utils.file import AUDIO_EXTENSIONS
# register eval resolver
OmegaConf.register_new_resolver("eval", eval)
def load_model(config_name, checkpoint_path, device="cuda"):
with initialize(version_base="1.3", config_path="../../fish_speech/configs"):
cfg = compose(config_name=config_name)
model: LightningModule = instantiate(cfg.model)
state_dict = torch.load(
checkpoint_path,
map_location=model.device,
)
if "state_dict" in state_dict:
state_dict = state_dict["state_dict"]
model.load_state_dict(state_dict, strict=False)
model.eval()
model.to(device)
logger.info("Restored model from checkpoint")
return model
@torch.no_grad()
@click.command()
@click.option(
"--input-path",
"-i",
default="test.wav",
type=click.Path(exists=True, path_type=Path),
)
@click.option(
"--output-path", "-o", default="fake.wav", type=click.Path(path_type=Path)
)
@click.option("--config-name", "-cfg", default="vqgan_pretrain")
@click.option(
"--checkpoint-path",
"-ckpt",
default="checkpoints/vq-gan-group-fsq-2x1024.pth",
)
@click.option(
"--device",
"-d",
default="cuda",
)
def main(input_path, output_path, config_name, checkpoint_path, device):
model = load_model(config_name, checkpoint_path, device=device)
if input_path.suffix in AUDIO_EXTENSIONS:
logger.info(f"Processing in-place reconstruction of {input_path}")
# Load audio
audio, _ = librosa.load(
input_path,
sr=model.sampling_rate,
mono=True,
)
audios = torch.from_numpy(audio).to(model.device)[None, None, :]
logger.info(
f"Loaded audio with {audios.shape[2] / model.sampling_rate:.2f} seconds"
)
# VQ Encoder
audio_lengths = torch.tensor(
[audios.shape[2]], device=model.device, dtype=torch.long
)
indices = model.encode(audios, audio_lengths)[0][0]
logger.info(f"Generated indices of shape {indices.shape}")
# Save indices
np.save(output_path.with_suffix(".npy"), indices.cpu().numpy())
elif input_path.suffix == ".npy":
logger.info(f"Processing precomputed indices from {input_path}")
indices = np.load(input_path)
indices = torch.from_numpy(indices).to(model.device).long()
assert indices.ndim == 2, f"Expected 2D indices, got {indices.ndim}"
else:
raise ValueError(f"Unknown input type: {input_path}")
# Restore
feature_lengths = torch.tensor([indices.shape[1]], device=model.device)
fake_audios = model.decode(
indices=indices[None], feature_lengths=feature_lengths, return_audios=True
)
audio_time = fake_audios.shape[-1] / model.sampling_rate
logger.info(
f"Generated audio of shape {fake_audios.shape}, equivalent to {audio_time:.2f} seconds from {indices.shape[1]} features, features/second: {indices.shape[1] / audio_time:.2f}"
)
# Save audio
fake_audio = fake_audios[0, 0].float().cpu().numpy()
sf.write(output_path, fake_audio, model.sampling_rate)
logger.info(f"Saved audio to {output_path}")
if __name__ == "__main__":
main()