Spaces:
Running
on
A10G
Running
on
A10G
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from .wavenet import WaveNet | |
class ReferenceEncoder(WaveNet): | |
def __init__( | |
self, | |
input_channels: Optional[int] = None, | |
output_channels: Optional[int] = None, | |
residual_channels: int = 512, | |
residual_layers: int = 20, | |
dilation_cycle: Optional[int] = 4, | |
num_heads: int = 8, | |
latent_len: int = 4, | |
): | |
super().__init__( | |
input_channels=input_channels, | |
residual_channels=residual_channels, | |
residual_layers=residual_layers, | |
dilation_cycle=dilation_cycle, | |
) | |
self.head_dim = residual_channels // num_heads | |
self.num_heads = num_heads | |
self.latent_len = latent_len | |
self.latent = nn.Parameter(torch.zeros(1, self.latent_len, residual_channels)) | |
self.q = nn.Linear(residual_channels, residual_channels, bias=True) | |
self.kv = nn.Linear(residual_channels, residual_channels * 2, bias=True) | |
self.q_norm = nn.LayerNorm(self.head_dim) | |
self.k_norm = nn.LayerNorm(self.head_dim) | |
self.proj = nn.Linear(residual_channels, residual_channels) | |
self.proj_drop = nn.Dropout(0.1) | |
self.norm = nn.LayerNorm(residual_channels) | |
self.mlp = nn.Sequential( | |
nn.Linear(residual_channels, residual_channels * 4), | |
nn.SiLU(), | |
nn.Linear(residual_channels * 4, residual_channels), | |
) | |
self.output_projection_attn = nn.Linear(residual_channels, output_channels) | |
torch.nn.init.trunc_normal_(self.latent, std=0.02) | |
self.apply(self.init_weights) | |
def init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
torch.nn.init.trunc_normal_(m.weight, std=0.02) | |
if m.bias is not None: | |
torch.nn.init.constant_(m.bias, 0) | |
def forward(self, x, attn_mask=None): | |
x = super().forward(x).mT | |
B, N, C = x.shape | |
# Calculate mask | |
if attn_mask is not None: | |
assert attn_mask.shape == (B, N) and attn_mask.dtype == torch.bool | |
attn_mask = attn_mask[:, None, None, :].expand( | |
B, self.num_heads, self.latent_len, N | |
) | |
q_latent = self.latent.expand(B, -1, -1) | |
q = ( | |
self.q(q_latent) | |
.reshape(B, self.latent_len, self.num_heads, self.head_dim) | |
.transpose(1, 2) | |
) | |
kv = ( | |
self.kv(x) | |
.reshape(B, N, 2, self.num_heads, self.head_dim) | |
.permute(2, 0, 3, 1, 4) | |
) | |
k, v = kv.unbind(0) | |
q, k = self.q_norm(q), self.k_norm(k) | |
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) | |
x = x.transpose(1, 2).reshape(B, self.latent_len, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
x = x + self.mlp(self.norm(x)) | |
x = self.output_projection_attn(x) | |
x = x.mean(1) | |
return x | |
if __name__ == "__main__": | |
with torch.autocast(device_type="cpu", dtype=torch.bfloat16): | |
model = ReferenceEncoder( | |
input_channels=128, | |
output_channels=64, | |
residual_channels=384, | |
residual_layers=20, | |
dilation_cycle=4, | |
num_heads=8, | |
) | |
x = torch.randn(4, 128, 64) | |
mask = torch.ones(4, 64, dtype=torch.bool) | |
y = model(x, mask) | |
print(y.shape) | |
loss = F.mse_loss(y, torch.randn(4, 64)) | |
loss.backward() | |