import os import queue import threading import time from contextlib import nullcontext from dataclasses import dataclass from pathlib import Path from typing import Literal, Optional, Tuple, Union import click import hydra import numpy as np import torch import torch._dynamo.config import torch._inductor.config from loguru import logger from tqdm import tqdm from transformers import AutoTokenizer from fish_speech.conversation import ( CODEBOOK_PAD_TOKEN_ID, Conversation, Message, TextPart, VQPart, ) from fish_speech.models.text2semantic.llama import BaseModelArgs from fish_speech.text import clean_text, split_text from fish_speech.tokenizer import IM_END_TOKEN, FishTokenizer os.environ["TOKENIZERS_PARALLELISM"] = "false" torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.triton.unique_kernel_names = True if hasattr(torch._inductor.config, "fx_graph_cache"): # Experimental feature to reduce compilation times, will be on by default in future torch._inductor.config.fx_graph_cache = True from torch.nn.attention import SDPBackend, sdpa_kernel from fish_speech.models.text2semantic.llama import ( BaseTransformer, DualARTransformer, NaiveTransformer, ) def multinomial_sample_one_no_sync( probs_sort, ): # Does multinomial sampling without a cuda synchronization q = torch.empty_like(probs_sort).exponential_(1) return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) def logits_to_probs( logits, previous_tokens: Optional[torch.Tensor] = None, temperature: torch.Tensor = 1.0, top_p: torch.Tensor = 1.0, repetition_penalty: torch.Tensor = 1.0, ) -> torch.Tensor: # Apply repetition penalty if previous_tokens is not None: previous_tokens = previous_tokens.long() score = torch.gather(logits, dim=0, index=previous_tokens) score = torch.where( score < 0, score * repetition_penalty, score / repetition_penalty ) logits.scatter_(dim=0, index=previous_tokens, src=score) # Apply top-p sampling sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > top_p sorted_indices_to_remove[0] = False # keep at least one option indices_to_remove = sorted_indices_to_remove.scatter( dim=0, index=sorted_indices, src=sorted_indices_to_remove ) logits = logits.masked_fill(indices_to_remove, -float("Inf")) logits = logits / max(temperature, 1e-5) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def multinomial_sample_one_no_sync_agent( probs_sort, ): # Does multinomial sampling without a cuda synchronization q = torch.empty_like(probs_sort).exponential_(1) return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) def logits_to_probs_agent( logits, previous_tokens: Optional[torch.Tensor] = None, temperature: torch.Tensor = 1.0, top_p: torch.Tensor = 1.0, repetition_penalty: torch.Tensor = 1.0, ) -> torch.Tensor: # Apply repetition penalty if previous_tokens is not None: previous_tokens = previous_tokens.long() score = torch.gather(logits, dim=-1, index=previous_tokens) score = torch.where( score < 0, score * repetition_penalty, score / repetition_penalty ) logits.scatter_(dim=-1, index=previous_tokens, src=score) # Apply top-p sampling sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > top_p sorted_indices_to_remove[..., 0] = False # keep at least one option indices_to_remove = sorted_indices_to_remove.scatter( dim=-1, index=sorted_indices, src=sorted_indices_to_remove ) logits = logits.masked_fill(indices_to_remove, -float("Inf")) logits = logits / max(temperature, 1e-5) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def sample( logits, previous_tokens: Optional[torch.Tensor] = None, **sampling_kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: probs = logits_to_probs( logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs ) idx_next = multinomial_sample_one_no_sync(probs) return idx_next, probs def sample_agent( logits, previous_tokens: Optional[torch.Tensor] = None, **sampling_kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: probs = logits_to_probs_agent( logits=logits[:, -1], previous_tokens=previous_tokens, **sampling_kwargs ) idx_next = multinomial_sample_one_no_sync_agent(probs) return idx_next, probs def decode_one_token_ar_agent( model: DualARTransformer, x: torch.Tensor, input_pos: torch.Tensor, semantic_ids: list, previous_tokens: torch.Tensor = None, **sampling_kwargs, ) -> torch.Tensor: # print(x, input_pos) x = model.forward_generate(x, input_pos) logits = x.logits # [:, -1:] hidden_states = x.hidden_states # [:, -1:] sampling_kwargs_main = sampling_kwargs.copy() sampling_kwargs_main["temperature"] = 0.1 sampling_kwargs_main["top_p"] = 0.1 sampling_kwargs_main["repetition_penalty"] = 1.0 codebooks = [ sample_agent( logits, previous_tokens=None, # Disable repetition penalty for the token codebook **sampling_kwargs_main, )[0] ] # Cleanup the cache for layer in model.fast_layers: layer.attention.kv_cache.k_cache.fill_(0) layer.attention.kv_cache.v_cache.fill_(0) for codebook_idx in range(model.config.num_codebooks): input_pos = torch.tensor( [codebook_idx], device=hidden_states.device, dtype=torch.long ) logits = model.forward_generate_fast(hidden_states, input_pos) a = sample_agent( logits, previous_tokens=( previous_tokens[:, codebook_idx + 1] if previous_tokens is not None else None ), **sampling_kwargs, )[0] hidden_states = model.fast_embeddings(a) codebooks.append(a) codebooks = torch.stack(codebooks, dim=1) semantic_ids_tensor = torch.tensor(semantic_ids, device=codebooks.device) codebooks[:, 1:, :] = torch.masked_fill( codebooks[:, 1:, :], ~torch.isin(codebooks[:, :1, :], semantic_ids_tensor), CODEBOOK_PAD_TOKEN_ID, ) return codebooks def decode_one_token_naive_agent( model: NaiveTransformer, x: torch.Tensor, input_pos: torch.Tensor, semantic_ids: list, previous_tokens: torch.Tensor = None, **sampling_kwargs, ) -> torch.Tensor: x = model.forward_generate(x, input_pos) codebooks = [ sample( x.token_logits, previous_tokens=None, # Disable repetition penalty for the token codebook **sampling_kwargs, )[0] ] for i in range(model.config.num_codebooks): codebooks.append( sample_agent( x.codebook_logits[:, :, i], previous_tokens=( previous_tokens[:, i + 1] if previous_tokens is not None else None ), **sampling_kwargs, )[0] ) codebooks = torch.stack(codebooks, dim=1) semantic_ids_tensor = torch.tensor(semantic_ids, device=codebooks.device) codebooks[:, 1:, :] = torch.masked_fill( codebooks[:, 1:, :], ~torch.isin(codebooks[:, :1, :], semantic_ids_tensor), CODEBOOK_PAD_TOKEN_ID, ) return codebooks def decode_one_token_ar( model: DualARTransformer, x: torch.Tensor, input_pos: torch.Tensor, semantic_ids: list, previous_tokens: torch.Tensor = None, **sampling_kwargs, ) -> torch.Tensor: x = model.forward_generate(x, input_pos) sampling_kwargs_main = sampling_kwargs.copy() # sampling_kwargs_main["temperature"] = 0.1 # sampling_kwargs_main["top_p"] = 0.1 # sampling_kwargs_main["repetition_penalty"] = 1.0 codebooks = [ sample( x.logits, previous_tokens=( previous_tokens[0] if previous_tokens is not None else None ), # Disable repetition penalty for the token codebook **sampling_kwargs_main, )[0] ] hidden_states = x.hidden_states # Cleanup the cache for layer in model.fast_layers: layer.attention.kv_cache.k_cache.fill_(0) layer.attention.kv_cache.v_cache.fill_(0) input_pos = torch.tensor([0], device=hidden_states.device, dtype=torch.long) model.forward_generate_fast(hidden_states, input_pos) a = codebooks[0] - model.tokenizer.semantic_begin_id a[a < 0] = 0 hidden_states = model.fast_embeddings(a) codebooks.append(a) for codebook_idx in range(1, model.config.num_codebooks): input_pos = torch.tensor( [codebook_idx], device=hidden_states.device, dtype=torch.long ) logits = model.forward_generate_fast(hidden_states, input_pos) a = sample( logits, previous_tokens=( previous_tokens[codebook_idx + 1] if previous_tokens is not None else None ), **sampling_kwargs, )[0] hidden_states = model.fast_embeddings(a) codebooks.append(a) codebooks = torch.stack(codebooks, dim=0) # semantic_ids_tensor = torch.tensor(semantic_ids, device=codebooks.device) # codebooks[1:, :] = torch.masked_fill( # codebooks[1:, :], ~torch.isin(codebooks[:1, :], semantic_ids_tensor), CODEBOOK_PAD_TOKEN_ID # ) # print(codebooks) return codebooks def decode_one_token_naive( model: NaiveTransformer, x: torch.Tensor, input_pos: torch.Tensor, previous_tokens: torch.Tensor = None, **sampling_kwargs, ) -> torch.Tensor: x = model.forward_generate(x, input_pos) sampling_kwargs_main = sampling_kwargs.copy() sampling_kwargs_main["temperature"] = 0.1 sampling_kwargs_main["top_p"] = 0.1 sampling_kwargs_main["repetition_penalty"] = 1.0 codebooks = [ sample( x.logits, previous_tokens=None, # Disable repetition penalty for the token codebook **sampling_kwargs_main, )[0] ] for i in range(model.config.num_codebooks): codebooks.append( sample( x.codebook_logits[:, :, i], previous_tokens=( previous_tokens[i + 1] if previous_tokens is not None else None ), **sampling_kwargs, )[0] ) return torch.stack(codebooks, dim=0) def decode_n_tokens( model: NaiveTransformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, semantic_ids: list, decode_one_token=decode_one_token_naive, **sampling_kwargs, ): previous_tokens = torch.zeros( (model.config.num_codebooks + 1, model.config.max_seq_len), dtype=torch.int, device=cur_token.device, ) for i in tqdm(range(num_new_tokens)): # We need to get windowed repeat penalty win_size = 16 if i < win_size: window = previous_tokens[:, :win_size] else: window = previous_tokens[:, i - win_size : i] with ( torch.backends.cuda.sdp_kernel( enable_flash=False, enable_mem_efficient=False, enable_math=True ) if torch.cuda.is_available() else nullcontext() ): # Actually better for Inductor to codegen attention here next_token = decode_one_token( model=model, x=cur_token, input_pos=input_pos, previous_tokens=window, semantic_ids=semantic_ids, **sampling_kwargs, ) input_pos += 1 cur_token = next_token.view(1, model.config.num_codebooks + 1, -1) previous_tokens[:, i : i + 1] = next_token.view( model.config.num_codebooks + 1, -1 ) if cur_token[0, 0, -1] == model.tokenizer.get_token_id(IM_END_TOKEN): break return previous_tokens[:, : i + 1] @torch.no_grad() @torch.inference_mode() def generate( *, model: NaiveTransformer, prompt: torch.Tensor, max_new_tokens: int, decode_one_token=decode_one_token_naive, **sampling_kwargs, ) -> torch.Tensor: """ Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. """ # create an empty tensor of the expected final shape and fill in the current tokens T = prompt.size(1) # semantic_id = model.tokenizer.convert_tokens_to_ids("<|semantic|>") semantic_ids = [ model.tokenizer.get_token_id(f"<|semantic:{i}|>") for i in range(1024) ] if max_new_tokens: if T + max_new_tokens > model.config.max_seq_len: max_new_tokens = model.config.max_seq_len - T logger.info(f"Truncating max_new_tokens to {max_new_tokens}") T_new = T + max_new_tokens else: T_new = model.config.max_seq_len max_new_tokens = T_new - T device, dtype = prompt.device, prompt.dtype codebook_dim = 1 + model.config.num_codebooks # create an empty tensor of the expected final shape and fill in the current tokens empty = torch.empty( (codebook_dim, model.config.max_seq_len), dtype=dtype, device=device ) empty[:, :T] = prompt seq = empty input_pos = torch.arange(0, T, device=device) # Use non-accelerated version for now, to avoid compilation overhead prefill_decode = ( decode_one_token_naive if isinstance(model, NaiveTransformer) else decode_one_token_ar ) next_token = prefill_decode( model, prompt.view(1, codebook_dim, -1), input_pos, semantic_ids=semantic_ids, **sampling_kwargs, ) seq[:, T : T + 1] = next_token input_pos = torch.tensor([T], device=device, dtype=torch.int) x = decode_n_tokens( model, next_token.view(1, codebook_dim, -1), input_pos, max_new_tokens - 1, decode_one_token=decode_one_token, semantic_ids=semantic_ids, **sampling_kwargs, ) # x = torch.cat(generated_tokens, dim=1) seq = seq[:, : T + 1 + x.size(1)] seq[:, T + 1 :] = x return seq def decode_n_tokens_agent( model: NaiveTransformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, semantic_ids: list, im_end_id: int = 4, decode_one_token=decode_one_token_naive_agent, early_stop_threshold: float = 0.6, **sampling_kwargs, ): batch_size = cur_token.size(0) previous_tokens = torch.zeros( (batch_size, model.config.num_codebooks + 1, model.config.max_seq_len), dtype=torch.int, device=cur_token.device, ) finished = torch.zeros(batch_size, dtype=torch.bool, device=cur_token.device) finished = finished | (cur_token[:, 0, -1] == im_end_id) start_time = time.time() for i in tqdm(range(num_new_tokens), desc="Decoding: ", total=num_new_tokens): # We need to get windowed repeat penalty win_size = 16 if i < win_size: window = previous_tokens[:, :, :win_size] else: window = previous_tokens[:, :, i - win_size : i] with sdpa_kernel( SDPBackend.MATH ): # Actually better for Inductor to codegen attention here next_token = decode_one_token( model=model, x=cur_token, input_pos=input_pos, previous_tokens=window, semantic_ids=semantic_ids, **sampling_kwargs, ) input_pos += 1 cur_token = next_token.view(batch_size, model.config.num_codebooks + 1, -1) previous_tokens[:, :, i : i + 1] = next_token.view( batch_size, model.config.num_codebooks + 1, -1 ) yield cur_token.cpu() finished = finished | (cur_token[:, 0, -1] == im_end_id) if finished.all() or ( 0 < early_stop_threshold < 1 and finished.sum() >= round(batch_size * early_stop_threshold) ): break total_time = time.time() - start_time generated_tokens = i + 1 tokens_per_second = (generated_tokens / total_time) * batch_size logger.info( f"Decoded {generated_tokens} x {batch_size} tokens in {total_time:.2f}s ({tokens_per_second:.2f} tokens/s)" ) @torch.no_grad() @torch.inference_mode() def generate_agent( *, model: BaseTransformer, prompt: torch.Tensor, max_new_tokens: int, semantic_ids: list, im_end_id: int = 4, decode_one_token=decode_one_token_naive_agent, num_samples: int = 1, early_stop_threshold: float = 0.6, **sampling_kwargs, ): """ Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. """ # create an empty tensor of the expected final shape and fill in the current tokens T = prompt.size(1) prompt = prompt[None].repeat(num_samples, 1, 1) if T >= model.config.max_seq_len: raise ValueError( f"Input sequence length {T} exceeds max_seq_len {model.config.max_seq_len}" ) if max_new_tokens: if T + max_new_tokens > model.config.max_seq_len: max_new_tokens = model.config.max_seq_len - T logger.info(f"Truncating max_new_tokens to {max_new_tokens}") T_new = T + max_new_tokens else: T_new = model.config.max_seq_len max_new_tokens = T_new - T device, dtype = prompt.device, prompt.dtype codebook_dim = 1 + model.config.num_codebooks input_pos = torch.arange(0, T, device=device) # Use non-accelerated version for now, to avoid compilation overhead prefill_decode = ( decode_one_token_naive_agent if isinstance(model, NaiveTransformer) else decode_one_token_ar_agent ) next_token = prefill_decode( model, prompt, input_pos, semantic_ids=semantic_ids, **sampling_kwargs, ).view(num_samples, codebook_dim, -1) yield next_token.cpu() input_pos = torch.tensor([T], device=device, dtype=torch.int) yield from decode_n_tokens_agent( model, next_token, input_pos, max_new_tokens - 1, im_end_id=im_end_id, semantic_ids=semantic_ids, decode_one_token=decode_one_token, early_stop_threshold=early_stop_threshold, **sampling_kwargs, ) def encode_tokens( tokenizer, string, device="cuda", prompt_tokens=None, num_codebooks=4, ): string = clean_text(string) messages = [] messages.append( Message( role="user", parts=[TextPart(text=string)], cal_loss=False, ) ) if prompt_tokens is not None: if prompt_tokens.ndim == 3: assert ( prompt_tokens.shape[0] == 1 ), "3D prompt tokens should have shape (1, num_codebooks, seq_len)" prompt_tokens = prompt_tokens[0] assert prompt_tokens.ndim == 2, "Prompt tokens should be 2D tensor" if prompt_tokens.shape[0] > num_codebooks: logger.warning( f"Prompt tokens shape {prompt_tokens.shape} is larger than num_codebooks {num_codebooks}, getting first {num_codebooks} codebooks" ) prompt_tokens = prompt_tokens[:num_codebooks] vq_part = VQPart(codes=prompt_tokens.to(device)) messages.append( Message( role="assistant", parts=[TextPart(text="<|voice|>"), vq_part], cal_loss=False, ) ) else: messages.append( Message( role="assistant", parts=[TextPart(text="<|voice|>")], cal_loss=False, add_im_end=False, ) ) conversation = Conversation(messages=messages) # conversation.visualize(tokenizer) encoded = conversation.encode_for_inference( tokenizer=tokenizer, num_codebooks=num_codebooks, ) return encoded.to(device) def load_model(checkpoint_path, device, precision, compile=False, is_agent=False): model: Union[NaiveTransformer, DualARTransformer] = BaseTransformer.from_pretrained( checkpoint_path, load_weights=True, is_agent=is_agent ) model = model.to(device=device, dtype=precision) logger.info(f"Restored model from checkpoint") if isinstance(model, DualARTransformer): decode_one_token = ( decode_one_token_ar_agent if is_agent else decode_one_token_ar ) logger.info("Using DualARTransformer") else: decode_one_token = ( decode_one_token_naive_agent if is_agent else decode_one_token_naive ) logger.info("Using NaiveTransformer") if compile: logger.info("Compiling function...") decode_one_token = torch.compile( decode_one_token, fullgraph=True, backend="inductor" if torch.cuda.is_available() else "aot_eager", mode="reduce-overhead" if torch.cuda.is_available() else None, ) return model.eval(), decode_one_token @dataclass class GenerateResponse: action: Literal["sample", "next"] codes: Optional[torch.Tensor] = None text: Optional[str] = None def generate_long( *, model, device: str | torch.device, decode_one_token: callable, text: str, num_samples: int = 1, max_new_tokens: int = 0, top_p: int = 0.7, repetition_penalty: float = 1.5, temperature: float = 0.7, compile: bool = False, iterative_prompt: bool = True, max_length: int = 2048, chunk_length: int = 150, prompt_text: Optional[str | list[str]] = None, prompt_tokens: Optional[torch.Tensor | list[torch.Tensor]] = None, ): assert 0 < top_p <= 1, "top_p must be in (0, 1]" assert 0 < repetition_penalty < 2, "repetition_penalty must be in (0, 2)" assert 0 < temperature < 2, "temperature must be in (0, 2)" use_prompt = prompt_text is not None and prompt_tokens is not None if use_prompt and isinstance(prompt_text, str): prompt_text = [prompt_text] prompt_tokens = [prompt_tokens] assert use_prompt is False or len(prompt_text) == len( prompt_tokens ), "Prompt text and tokens must have the same length" model_size = sum(p.numel() for p in model.parameters() if p.requires_grad) tokenizer = model.tokenizer im_end_id = tokenizer.get_token_id("<|im_end|>") encoded = [] texts = split_text(text, chunk_length) if iterative_prompt else [text] encoded_prompts = [ Conversation( messages=[ Message( role="system", parts=[TextPart(text="Speak out the provided text.")], cal_loss=False, ) ] ) .encode_for_inference( tokenizer=tokenizer, num_codebooks=model.config.num_codebooks, ) .to(device) ] if use_prompt: for idx, (t, c) in enumerate(zip(prompt_text, prompt_tokens)): encoded_prompts.append( encode_tokens( tokenizer, string=t, device=device, prompt_tokens=c, num_codebooks=model.config.num_codebooks, ) ) for idx, text in enumerate(texts): encoded.append( encode_tokens( tokenizer, string=text, device=device, num_codebooks=model.config.num_codebooks, ) ) logger.info(f"Encoded text: {text}") # Move temperature, top_p, repetition_penalty to device # This is important so that changing params doesn't trigger recompile temperature = torch.tensor(temperature, device=device, dtype=torch.float) top_p = torch.tensor(top_p, device=device, dtype=torch.float) repetition_penalty = torch.tensor( repetition_penalty, device=device, dtype=torch.float ) for sample_idx in range(num_samples): if torch.cuda.is_available(): torch.cuda.synchronize() global_encoded = [] seg_idx = 0 while seg_idx < len(encoded): logger.info( f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}" ) seg = encoded[seg_idx] global_encoded.append(seg) lengths = reversed([seg.size(1) for seg in global_encoded]) # Pick last 2000 tokens count = 0 for i, length in enumerate(lengths): count += length if count + length > max_length - 1024 - sum( t.shape[1] for t in encoded_prompts ): break if i != 0 and i % 2 == 0: i -= 1 # Rotate the list, always make sure first segment is included to avoid drift if i < len(global_encoded) - 2: partial_encoded = global_encoded[:2] + global_encoded[-i:] else: partial_encoded = global_encoded if use_prompt: partial_encoded = encoded_prompts + partial_encoded cat_encoded = torch.cat(partial_encoded, dim=1) prompt_length = cat_encoded.size(1) t0 = time.perf_counter() y = generate( model=model, prompt=cat_encoded, max_new_tokens=max_new_tokens, decode_one_token=decode_one_token, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, ) if sample_idx == 0 and seg_idx == 0 and compile: logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds") if torch.cuda.is_available(): torch.cuda.synchronize() t = time.perf_counter() - t0 tokens_generated = y.size(1) - prompt_length tokens_sec = tokens_generated / t logger.info( f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec" ) logger.info( f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s" ) if torch.cuda.is_available(): logger.info( f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB" ) # Put the generated tokens # since there is , we remove last token codes = y[1:, prompt_length + 1 :].clone() assert (codes >= 0).all(), f"Negative code found" decoded = y[:, prompt_length:].clone() # But for global encoding, we should keep the token global_encoded.append(decoded) assert (codes >= 0).all(), f"Negative code found: {codes}" yield GenerateResponse(action="sample", codes=codes, text=texts[seg_idx]) seg_idx += 1 # This indicates the end of the current sample yield GenerateResponse(action="next") @dataclass class WrappedGenerateResponse: status: Literal["success", "error"] response: Optional[GenerateResponse | Exception] = None @dataclass class GenerateRequest: request: dict response_queue: queue.Queue def launch_thread_safe_queue( checkpoint_path, device, precision, compile: bool = False, ): input_queue = queue.Queue() init_event = threading.Event() def worker(): model, decode_one_token = load_model( checkpoint_path, device, precision, compile=compile ) with torch.device(device): model.setup_caches( max_batch_size=1, max_seq_len=model.config.max_seq_len, dtype=next(model.parameters()).dtype, ) init_event.set() while True: item: GenerateRequest | None = input_queue.get() if item is None: break kwargs = item.request response_queue = item.response_queue try: for chunk in generate_long( model=model, decode_one_token=decode_one_token, **kwargs ): response_queue.put( WrappedGenerateResponse(status="success", response=chunk) ) except Exception as e: response_queue.put(WrappedGenerateResponse(status="error", response=e)) threading.Thread(target=worker, daemon=True).start() init_event.wait() return input_queue def launch_thread_safe_queue_agent( checkpoint_path, device, precision, compile: bool = False, ): input_queue = queue.Queue() init_event = threading.Event() tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) config = BaseModelArgs.from_pretrained(checkpoint_path) def worker(): model, decode_one_token = load_model( checkpoint_path, device, precision, compile=compile, is_agent=True ) with torch.device(device): model.setup_caches( max_batch_size=1, max_seq_len=model.config.max_seq_len, dtype=next(model.parameters()).dtype, ) init_event.set() while True: item: GenerateRequest | None = input_queue.get() if item is None: break kwargs = item.request response_queue = item.response_queue try: for token in generate_agent( model=model, decode_one_token=decode_one_token, **kwargs, ): response_queue.put(token) response_queue.put("stop") except Exception as e: import traceback logger.exception(f"Error in worker: {traceback.format_exc()}") response_queue.put("error") threading.Thread(target=worker, daemon=True).start() init_event.wait() return input_queue, tokenizer, config @click.command() @click.option( "--text", type=str, default="你说的对, 但是原神是一款由米哈游自主研发的开放世界手游.", ) @click.option("--prompt-text", type=str, default=None, multiple=True) @click.option( "--prompt-tokens", type=click.Path(path_type=Path, exists=True), default=None, multiple=True, ) @click.option("--num-samples", type=int, default=1) @click.option("--max-new-tokens", type=int, default=0) @click.option("--top-p", type=float, default=0.7) @click.option("--repetition-penalty", type=float, default=1.2) @click.option("--temperature", type=float, default=0.7) @click.option( "--checkpoint-path", type=click.Path(path_type=Path, exists=True), default="checkpoints/fish-speech-1.4", ) @click.option("--device", type=str, default="cuda") @click.option("--compile/--no-compile", default=False) @click.option("--seed", type=int, default=42) @click.option("--half/--no-half", default=False) @click.option("--iterative-prompt/--no-iterative-prompt", default=True) @click.option("--chunk-length", type=int, default=100) def main( text: str, prompt_text: Optional[list[str]], prompt_tokens: Optional[list[Path]], num_samples: int, max_new_tokens: int, top_p: int, repetition_penalty: float, temperature: float, checkpoint_path: Path, device: str, compile: bool, seed: int, half: bool, iterative_prompt: bool, chunk_length: int, ) -> None: precision = torch.half if half else torch.bfloat16 if prompt_text is not None and len(prompt_text) != len(prompt_tokens): raise ValueError( f"Number of prompt text ({len(prompt_text)}) and prompt tokens ({len(prompt_tokens)}) should be the same" ) logger.info("Loading model ...") t0 = time.time() model, decode_one_token = load_model( checkpoint_path, device, precision, compile=compile ) with torch.device(device): model.setup_caches( max_batch_size=1, max_seq_len=model.config.max_seq_len, dtype=next(model.parameters()).dtype, ) if torch.cuda.is_available(): torch.cuda.synchronize() logger.info(f"Time to load model: {time.time() - t0:.02f} seconds") if prompt_tokens is not None: prompt_tokens = [torch.from_numpy(np.load(p)).to(device) for p in prompt_tokens] torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) generator = generate_long( model=model, device=device, decode_one_token=decode_one_token, text=text, num_samples=num_samples, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, compile=compile, iterative_prompt=iterative_prompt, chunk_length=chunk_length, prompt_text=prompt_text, prompt_tokens=prompt_tokens, ) idx = 0 codes = [] for response in generator: if response.action == "sample": codes.append(response.codes) logger.info(f"Sampled text: {response.text}") elif response.action == "next": if codes: np.save(f"codes_{idx}.npy", torch.cat(codes, dim=1).cpu().numpy()) logger.info(f"Saved codes to codes_{idx}.npy") logger.info(f"Next sample") codes = [] idx += 1 else: logger.error(f"Error: {response}") if __name__ == "__main__": main()