Spaces:
Runtime error
Runtime error
File size: 12,527 Bytes
fc16538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
# TRI-VIDAR - Copyright 2022 Toyota Research Institute. All rights reserved.
import importlib
import os
from argparse import Namespace
import torch
import yaml
from vidar.utils.data import make_list, num_trainable_params
from vidar.utils.distributed import print0
from vidar.utils.logging import pcolor
from vidar.utils.networks import load_checkpoint
from vidar.utils.types import is_dict, is_list, is_namespace
def cfg_has(*args):
"""
Check if a key is in configuration
Parameters
----------
args : Tuple (Config, String, Value)
Inputs:
length 2 = configuration/name,
length 3 = configuration/name/default
Returns
-------
Flag : Bool or Value
True/False if key is in configuration, key value/default if default is provided
"""
if len(args) == 2:
cfg, name = args
if not is_list(name):
return name in cfg.__dict__.keys()
else:
return all([n in cfg.__dict__.keys() for n in name])
elif len(args) == 3:
cfg, name, default = args
has = name in cfg.__dict__.keys()
return cfg.__dict__[name] if has else default
else:
raise ValueError('Wrong number of arguments for cfg_has')
def cfg_add_to_dict(dic, cfg, key, i=None):
"""
Add configuration key to dictionary
Parameters
----------
dic : Dict
Input dictionary
cfg : Config
Input configuration
key : String
Input key
i : Int
Optional list index
"""
if cfg_has(cfg, key):
dic[key] = cfg.__dict__[key] if i is None \
else cfg.__dict__[key][0] if len(cfg.__dict__[key]) == 1 \
else cfg.__dict__[key][i]
def cfg_from_dict(dic):
"""
Create configuration from dictionary
Parameters
----------
dic : Dict
Input dictionary
Returns
-------
cfg : Config
Output configuration
"""
for key, val in dic.items():
if is_dict(val):
dic[key] = cfg_from_dict(val)
return Config(**dic)
def update_cfg(cfg):
"""
Update configuration with hard-coded information
Parameters
----------
cfg : Config
Input configuration
Returns
-------
cfg : Config
Updated configuration
"""
if not torch.cuda.is_available():
cfg.setup.grad_scaler = False
return cfg
def to_namespace(data):
"""
Convert dictionary to namespace
Parameters
----------
data : Dict or Config
Input dictionary
Returns
-------
cfg : Config
Output configuration
"""
for key in data.keys():
if is_dict(data[key]):
data[key] = to_namespace(data[key])
return Config(**data)
def merge_dict(default, config):
"""
Merge two dictionaries
Parameters
----------
default : Dict
Dictionary with default values
config : Dict
Dictionary with values to update
Returns
-------
cfg : Dict
Updated dictionary
"""
if is_namespace(default):
default = default.__dict__
for key in config.keys():
if key not in default.keys():
default[key] = {}
if not is_dict(config[key]):
default[key] = config[key]
else:
default[key] = merge_dict(default[key], config[key])
return default
def update_from_kwargs(cfg, **kwargs):
"""
Update configuration based on keyword arguments
Parameters
----------
cfg : Config
Input configuration
kwargs : Dict
Keyword arguments
Returns
-------
cfg : Config
Updated configuration
"""
if kwargs is not None:
for key, val in kwargs.items():
key_split = key.split('.')
dic = cfg.__dict__
for k in key_split[:-1]:
dic = dic[k].__dict__
dic[key_split[-1]] = val
return cfg
def recursive_recipe(cfg, super_key=None):
"""
Add recipe parameters to configuration
Parameters
----------
cfg : Config
Input configuration
super_key : String
Which recipe entry to use
Returns
-------
cfg : Config
Updated configuration
"""
for key in list(cfg.keys()):
if is_dict(cfg[key]):
cfg[key] = recursive_recipe(cfg[key], super_key=key)
elif key == 'recipe':
recipe = 'configs/recipes/' + cfg.pop(key)
if '|' in recipe:
recipe, super_key = recipe.split('|')
recipe = read_config(recipe + '.yaml')
while '.' in super_key:
split = super_key.split('.')
recipe = recipe.__dict__[split[0]]
super_key = '.'.join(split[1:])
recipe = recipe.__dict__[super_key].__dict__
cfg = merge_dict(recipe, cfg)
return cfg
def read_config(path, **kwargs):
"""
Create configuration from file
Parameters
----------
path : String
Configuration path
kwargs : Dict
Keyword arguments to update configuration
Returns
-------
cfg : Config
Output configuration
"""
"""Read configuration from file"""
with open(path) as cfg:
config = yaml.load(cfg, Loader=yaml.FullLoader)
config = recursive_recipe(config)
cfg = to_namespace(config)
if kwargs is not None:
cfg = update_from_kwargs(cfg, **kwargs)
return cfg
def is_recursive(val):
"""
Check if configuration entry is recursive
Parameters
----------
val : Config
Input Configuration
Returns
-------
Flag : Bool
True/False if is recursive or not
"""
return 'file' in val.__dict__.keys()
def get_folder_name(path, mode, root='vidar/arch'):
"""
Get folder and name from configuration path
Parameters
----------
path : String
Input path
mode : String
Which mode to use (e.g., models, networks, losses)
root : String
Which folder to use
Returns
-------
folder : String
Output folder
name : String
Output name
"""
"""Get folder and name from configuration path"""
folder, name = os.path.dirname(path), os.path.basename(path)
folder = os.path.join(root, mode, folder)
if folder.endswith('/'):
folder = folder[:-1]
return folder, name
def recursive_assignment(model, cfg, mode, verbose=True):
"""
Recursively assign information from a configuration
Parameters
----------
model : torch.nn.Module
Which network we are using
cfg : Config
Input Configuration
mode : String
Which mode we are using (e.g., models, networks, losses)
verbose : Bool
Print information on screen
"""
font = {'color': 'yellow', 'attrs': ('dark',)}
for key, val in cfg.__dict__.items():
cls = cfg.__dict__[key]
if is_namespace(cls):
if is_recursive(val):
folder, name = get_folder_name(val.file, mode)
getattr(model, mode)[key] = load_class(name, folder)(cls)
if verbose:
string = '######### {}'.format(getattr(model, mode)[key].__class__.__name__)
num_params = num_trainable_params(getattr(model, mode)[key])
if num_params > 0:
string += f' ({num_params:,} parameters)'
print0(pcolor(string, **font))
if cfg_has(val, 'checkpoint'):
model_attr = getattr(model, mode)[key]
load_checkpoint(model_attr, val.checkpoint, strict=False, verbose=verbose, prefix=key)
recursive_assignment(getattr(model, mode)[key], cls, mode, verbose=verbose)
if key == 'blocks':
for key2, val2 in cfg.__dict__[key].__dict__.items():
cls2 = cfg.__dict__[key].__dict__[key2]
if is_recursive(val2):
folder, name = get_folder_name(val2.file, 'blocks')
model.blocks[key2] = load_class(name, folder)(cls2)
recursive_assignment(model.blocks[key2], cls2, 'blocks', verbose=verbose)
def load_class(filename, paths, concat=True, methodname=None):
"""
Look for a file in different locations and return its method with the same name
Optionally, you can use concat to search in path.filename instead
Parameters
----------
filename : String
Name of the file we are searching for
paths : String or list[String]
Folders in which the file will be searched
concat : Bol
Flag to concatenate filename to each path during the search
methodname : String or list[String]
Method name (If None, use filename
If it's a string, use it as the methodname
If it's a list, use the first methodname found)
Returns
-------
method : Function
Loaded method
"""
# If method name is not given, use filename
methodname = make_list(filename if methodname is None else methodname)
# for each path in paths
for path in make_list(paths):
# Create full path
path = path.replace('/', '.')
full_path = '{}.{}'.format(path, filename) if concat else path
# Get module
module = importlib.import_module(full_path)
# Try all method names
for name in methodname:
method = getattr(module, name, None)
# Return if found
if method is not None:
return method
# Didn't find anything
raise ValueError('Unknown class {}'.format(filename))
def get_from_cfg_list(cfg, key, idx):
"""
Get configuration value from a list
Parameters
----------
cfg : Config
Input configuration
key : String
Input configuration key
idx : Int
List index
Returns
-------
data : Value
Key value at that index if it's a list, otherwise return the key value directly
"""
if key not in cfg.__dict__.keys():
return None
data = cfg.__dict__[key]
return data if not is_list(data) else data[idx] if len(data) > 1 else data[0]
def dataset_prefix(cfg, idx):
"""
Create dataset prefix based on configuration information
Parameters
----------
cfg : Config
Input configuration
idx : Int
Input index for information retrieval
Returns
-------
prefix : String
Dataset prefix
"""
# Dataset path is always available
# prefix = cfg.name[idx]
prefix = '{}'.format(os.path.splitext(get_from_cfg_list(cfg, 'path', idx).split('/')[-1])[0])
# If split is available
val = get_from_cfg_list(cfg, 'split', idx)
if val is not None:
prefix += '-{}'.format(os.path.splitext(os.path.basename(val))[0])
# If input depth type is available
val = get_from_cfg_list(cfg, 'input_depth_type', idx)
if val is not None and val not in [None, '']:
prefix += '-+{}'.format(val)
# If depth type is available
val = get_from_cfg_list(cfg, 'depth_type', idx)
if val is not None and val not in [None, '']:
prefix += '-{}'.format(val)
# If there is camera information
val = get_from_cfg_list(cfg, 'cameras', idx)
if val is not None and is_list(val) and len(val) > 0:
prefix += '-cam{}'.format(val[0])
# Return prefix
return prefix
class Config(Namespace):
"""
Configuration class for passing arguments between other classes
Parameters
----------
kwargs: Dict
Arguments to create configuration
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
@staticmethod
def from_file(file):
"""Read configuration from file"""
return read_config(file)
@property
def dict(self):
"""Return configuration as dictionary"""
return self.__dict__
def keys(self):
"""Return dictionary keys of configuration"""
return self.dict.keys()
def items(self):
"""Return dictionary items of configuration"""
return self.dict.items()
def values(self):
"""Return dictionary values of configuration"""
return self.dict.values()
def has(self, *args):
"""Check if configuration has certain parameters"""
return cfg_has(self, *args)
|