File size: 9,100 Bytes
fc16538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# TRI-VIDAR - Copyright 2022 Toyota Research Institute.  All rights reserved.

import os
from datetime import datetime

import numpy as np
import torch

from vidar.utils.config import cfg_has
from vidar.utils.logging import pcolor


class ModelCheckpoint:
    """
    Class for model checkpointing

    Parameters
    ----------
    cfg : Config
        Configuration with parameters
    verbose : Bool
        Print information on screen if enabled
    """
    def __init__(self, cfg, verbose=False):
        super().__init__()

        # Create checkpoint folder
        self.folder = cfg_has(cfg, 'folder', None)
        self.name = cfg_has(cfg, 'name', datetime.now().strftime("%Y-%m-%d_%Hh%Mm%Ss"))
        if self.folder:
            self.path = os.path.join(self.folder, self.name)
            os.makedirs(self.path, exist_ok=True)
        else:
            self.path = None

        # Exclude folders
        self.excludes = ['sandbox']

        # If there is no folder, only track metrics
        self.tracking_only = self.path is None

        # Store arguments
        self.keep_top = cfg_has(cfg, 'keep_top', -1)
        self.dataset = cfg_has(cfg, 'dataset', [])
        self.monitor = cfg_has(cfg, 'monitor', [])
        self.mode = cfg_has(cfg, 'mode', [])

        # Number of metrics to track
        self.num_tracking = len(self.mode)

        # Prepare s3 bucket
        if cfg_has(cfg, 's3_bucket'):
            self.s3_path = f's3://{cfg.s3_bucket}/{self.name}'
            self.s3_url = f'https://s3.console.aws.amazon.com/s3/buckets/{self.s3_path[5:]}'
        else:
            self.s3_path = self.s3_url = None

        # Get starting information
        self.torch_inf = torch.tensor(np.Inf)
        mode_dict = {
            'min': (self.torch_inf, 'min'),
            'max': (-self.torch_inf, 'max'),
            'auto': (-self.torch_inf, 'max') if \
                'acc' in self.monitor or \
                'a1' in self.monitor or \
                'fmeasure' in self.monitor \
                else (self.torch_inf, 'min'),
        }

        if self.mode:
            self.top = [[] for _ in self.mode]
            self.store_val = [[] for _ in self.mode]
            self.previous = [0 for _ in self.mode]
            self.best = [mode_dict[m][0] for m in self.mode]
            self.mode = [mode_dict[m][1] for m in self.mode]
        else:
            self.top = []

        # Print if requested
        if verbose:
            self.print()

        # Save if requested
        if cfg_has(cfg, 'save_code', False):
            self.save_code()
            if self.s3_url:
                self.sync_s3(verbose=False)

    def print(self):
        """Print information on screen"""
        font_base = {'color': 'red', 'attrs': ('bold', 'dark')}
        font_name = {'color': 'red', 'attrs': ('bold',)}
        font_underline = {'color': 'red', 'attrs': ('underline',)}

        print(pcolor('#' * 60, **font_base))
        if self.path:
            print(pcolor('### Checkpoint: ', **font_base) + \
                  pcolor('{}/{}'.format(self.folder, self.name), **font_name))
            if self.s3_url:
                print(pcolor('### ', **font_base) + \
                      pcolor('{}'.format(self.s3_url), **font_underline))
        else:
            print(pcolor('### Checkpoint: ', **font_base) + \
                  pcolor('Tracking only', **font_name))
        print(pcolor('#' * 60, **font_base))

    @staticmethod
    def save_model(wrapper, name, epoch):
        """Save model"""
        torch.save({
            'config': wrapper.cfg, 'epoch': epoch,
            'state_dict': wrapper.arch.state_dict(),
        }, name)

    @staticmethod
    def del_model(name):
        """Delete model"""
        if os.path.isfile(name):
            os.remove(name)

    def save_code(self):
        """Save code in the models folder"""
        excludes = ' '.join([f'--exclude {exclude}' for exclude in self.excludes])
        os.system(f"tar cfz {self.path}/{self.name}.tar.gz {excludes} *")

    def sync_s3(self, verbose=True):
        """Sync saved models with the s3 bucket"""

        font_base = {'color': 'magenta', 'attrs': ('bold', 'dark')}
        font_name = {'color': 'magenta', 'attrs': ('bold',)}

        if verbose:
            print(pcolor('Syncing ', **font_base) +
                  pcolor('{}'.format(self.path), **font_name) +
                  pcolor(' -> ', **font_base) +
                  pcolor('{}'.format(self.s3_path), **font_name))

        command = f'aws s3 sync {self.path} {self.s3_path} ' \
                  f'--acl bucket-owner-full-control --quiet --delete'
        os.system(command)

    def print_improvements(self, key, value, idx, is_best):
        """Print color-coded changes in tracked metrics"""

        font1 = {'color': 'cyan', 'attrs':('dark', 'bold')}
        font2 = {'color': 'cyan', 'attrs': ('bold',)}
        font3 = {'color': 'yellow', 'attrs': ('bold',)}
        font4 = {'color': 'green', 'attrs': ('bold',)}
        font5 = {'color': 'red', 'attrs': ('bold',)}

        current_inf = self.best[idx] == self.torch_inf or \
                      self.best[idx] == -self.torch_inf

        print(
            pcolor(f'{key}', **font2) + \
            pcolor(f' ({self.mode[idx]}) : ', **font1) + \
            ('' if current_inf else
             pcolor('%3.6f' % self.previous[idx], **font3) +
             pcolor(f' -> ', **font1)) + \
            (pcolor('%3.6f' % value, **font4) if is_best else
             pcolor('%3.6f' % value, **font5)) +
            ('' if current_inf else
             pcolor(' (%3.6f)' % self.best[idx], **font2))
        )

    def save(self, wrapper, epoch, verbose=True):
        """Save model"""
        # Do nothing if no path is provided
        if self.path:

            name = '%03d.ckpt' % epoch
            folder = os.path.join(self.path, 'models')

            os.makedirs(folder, exist_ok=True)
            folder_name = os.path.join(folder, name)
            self.save_model(wrapper, folder_name, epoch)
            self.top.append(folder_name)
            if 0 < self.keep_top < len(self.top):
                self.del_model(self.top.pop(0))
            if self.s3_url:
                self.sync_s3(verbose=False)

        if verbose:
            print()

    def check_and_save(self, wrapper, metrics, prefixes, epoch, verbose=True):
        """Check if model should be saved and maybe save it"""
        # Not tracking any metric, save every iteration
        if self.num_tracking == 0:
            # Do nothing if no path is provided
            if self.path:

                name = '%03d.ckpt' % epoch
                folder = os.path.join(self.path, 'models')

                os.makedirs(folder, exist_ok=True)
                folder_name = os.path.join(folder, name)
                self.save_model(wrapper, folder_name, epoch)
                self.top.append(folder_name)
                if 0 < self.keep_top < len(self.top):
                    self.del_model(self.top.pop(0))
                if self.s3_url:
                    self.sync_s3(verbose=False)

        # Check if saving for every metric
        else:

            for idx in range(self.num_tracking):

                key = '{}-{}'.format(prefixes[self.dataset[idx]], self.monitor[idx])
                value = metrics[key]

                if self.mode[idx] == 'min':
                    is_best = value < self.best[idx]
                    will_store = len(self.store_val[idx]) < self.keep_top or \
                                 value < np.max(self.store_val[idx])
                    store_idx = 0 if len(self.store_val[idx]) == 0 else int(np.argmax(self.store_val[idx]))
                else:
                    is_best = value > self.best[idx]
                    will_store = len(self.store_val[idx]) < self.keep_top or \
                                 value > np.min(self.store_val[idx])
                    store_idx = 0 if len(self.store_val[idx]) == 0 else int(np.argmin(self.store_val[idx]))

                if verbose:
                    self.print_improvements(key, value, idx, is_best)

                self.previous[idx] = value

                if is_best:
                    self.best[idx] = value

                if is_best or will_store:

                    if self.path:

                        name = '%03d_%3.6f.ckpt' % (epoch, value)
                        folder = os.path.join(self.path, key)

                        os.makedirs(folder, exist_ok=True)
                        folder_name = os.path.join(folder, name)
                        self.save_model(wrapper, folder_name, epoch)
                        self.top[idx].append(folder_name)
                        self.store_val[idx].append(value)
                        if 0 < self.keep_top < len(self.top[idx]):
                            self.del_model(self.top[idx].pop(store_idx))
                            self.store_val[idx].pop(store_idx)
                        if self.s3_url:
                            self.sync_s3(verbose=False)

        if verbose:
            print()