File size: 8,880 Bytes
fc16538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# TRI-VIDAR - Copyright 2022 Toyota Research Institute.  All rights reserved.

import os

from vidar.utils.config import cfg_has
from vidar.utils.data import make_list
from vidar.utils.types import is_dict, is_list
from vidar.utils.viz import viz_depth, viz_optical_flow
from vidar.utils.write import write_depth, write_image, write_pickle, write_npz


class Saver:
    """
    Wandb logger class to monitor training

    Parameters
    ----------
    cfg : Config
        Configuration with parameters
    ckpt : String
        Name of the model checkpoint (used to create the save folder)
    """
    def __init__(self, cfg, ckpt=None):
        self.folder = cfg_has(cfg, 'folder', None)

        self.rgb = make_list(cfg.rgb) if cfg_has(cfg, 'rgb') else []
        self.depth = make_list(cfg.depth) if cfg_has(cfg, 'depth') else []
        self.pose = make_list(cfg.pose) if cfg_has(cfg, 'pose') else []
        self.optical_flow = make_list(cfg.optical_flow) if cfg_has(cfg, 'optical_flow') else []

        self.store_data = cfg_has(cfg, 'store_data', False)
        self.separate = cfg.has('separate', False)

        self.ckpt = None if ckpt is None else \
            os.path.splitext(os.path.basename(ckpt))[0]

        self.naming = cfg_has(cfg, 'naming', 'filename')
        assert self.naming in ['filename', 'splitname'], \
            'Invalid naming for saver: {}'.format(self.naming)

    def get_filename(self, path, batch, idx, i):
        """Get filename based on input information"""
        if self.naming == 'filename':
            filename = os.path.join(path, batch['filename'][0][i]).replace('{}', 'rgb')
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            return filename
        elif self.naming == 'splitname':
            if self.separate:
                return os.path.join(path, '%010d' % idx, '%010d' % idx)
            else:
                return os.path.join(path, '%010d' % idx)
        else:
            raise NotImplementedError('Invalid naming for saver: {}'.format(self.naming))

    def save_data(self, batch, output, prefix):
        """
        Prepare for data saving

        Parameters
        ----------
        batch : Dict
            Dictionary with batch information
        output : Dict
            Dictionary with output information
        prefix : String
            Prefix string for the log name
        """
        if self.folder is None:
            return

        idx = batch['idx']
        predictions = output['predictions']

        path = os.path.join(self.folder, prefix)
        if self.ckpt is not None:
            path = os.path.join(path, self.ckpt)
        os.makedirs(path, exist_ok=True)

        self.save(batch, predictions, path, idx, 0)

    def save(self, batch, predictions, path, idx, i):
        """
        Save batch and prediction information

        Parameters
        ----------
        batch : Dict
            Dictionary with batch information
        predictions : Dict
            Dictionary with output predictions
        path : String
            Path where data will be saved
        idx : Int
            Batch index in the split
        i : Int
            Index within batch

        Returns
        -------
        data : Dict
            Dictionary with output data that was saved
        """

        filename = self.get_filename(path, batch, idx, i)

        raw_intrinsics = batch['raw_intrinsics'][0][i].cpu() if 'raw_intrinsics' in batch else \
            batch['intrinsics'][0][i].cpu() if 'intrinsics' in batch else None
        intrinsics = batch['intrinsics'][0][i].cpu() if 'intrinsics' in batch else None

        data = {
            'raw_intrinsics': raw_intrinsics,
            'intrinsics': intrinsics,
        }

        for key in batch.keys():

            if key.startswith('rgb'):
                data[key + '_gt'] = {k: v[i].cpu() for k, v in batch[key].items()}
                for ctx in batch[key].keys():
                    rgb = batch[key][ctx][i].cpu()
                    if 'gt' in self.rgb:
                        if rgb.dim() == 5:
                            for j in range(rgb.shape[1]):
                                write_image('%s_%s(%d_%d)_gt.png' % (filename, key, j, ctx),
                                            rgb[:, j])
                        else:
                            write_image('%s_%s(%d)_gt.png' % (filename, key, ctx),
                                        rgb)

            if key.startswith('depth'):
                data[key + '_gt'] = {k: v[i].cpu() for k, v in batch[key].items()}
                for ctx in batch[key].keys():
                    depth = batch[key][ctx][i].cpu()
                    if 'gt_png' in self.depth:
                        write_depth('%s_%s(%d)_gt.png' % (filename, key, ctx),
                                    depth)
                    if 'gt_npz' in self.depth:
                        write_depth('%s_%s(%d)_gt.npz' % (filename, key, ctx),
                                    depth, intrinsics=raw_intrinsics)
                    if 'gt_viz' in self.depth:
                        write_image('%s_%s(%d)_gt_viz.png' % (filename, key, ctx),
                                    viz_depth(depth, filter_zeros=True))

            if key.startswith('pose'):
                pose = {k: v[i].cpu() for k, v in batch[key].items()}
                data[key + '_gt'] = pose
                if 'gt' in self.pose:
                    write_pickle('%s_%s_gt' % (filename, key),
                                 pose)

        for key in predictions.keys():

            if key.startswith('rgb'):
                data[key + '_pred'] = {k: v[i].cpu() for k, v in predictions[key].items()}
                for ctx in predictions[key].keys():
                    rgb = predictions[key][ctx][i].cpu()
                    if 'pred' in self.rgb:
                        if rgb.dim() == 5:
                            for j in range(rgb.shape[1]):
                                write_image('%s_%s(%d_%d)_pred.png' % (filename, key, j, ctx),
                                            rgb[:, j])
                        else:
                            write_image('%s_%s(%d)_pred.png' % (filename, key, ctx),
                                        rgb)

            if key.startswith('depth'):
                data[key + '_pred'] = {k: v[i].cpu() for k, v in predictions[key].items()}
                for ctx in predictions[key].keys():
                    depth = predictions[key][ctx][0][i].cpu()
                    if 'png' in self.depth:
                        write_depth('%s_%s(%d)_pred.png' % (filename, key, ctx),
                                    depth)
                    if 'npz' in self.depth:
                        write_depth('%s_%s(%d)_pred.npz' % (filename, key, ctx),
                                    depth, intrinsics=intrinsics)
                    if 'viz' in self.depth:
                        write_image('%s_%s(%d)_pred_viz.png' % (filename, key, ctx),
                                    viz_depth(depth))

            if key.startswith('pose'):
                pose = {key: val[i].cpu() for key, val in predictions[key].items()}
                data[key + '_pred'] = pose
                if 'pred' in self.pose:
                    write_pickle('%s_%s_pred' % (filename, key),
                                 pose)

            if key.startswith('fwd_optical_flow'):
                optical_flow = {key: val[i].cpu() for key, val in predictions[key].items()}
                data[key + '_pred'] = optical_flow
                if 'npz' in self.optical_flow:
                    write_npz('%s_%s_pred' % (filename, key),
                                 {'fwd_optical_flow': optical_flow})
                if 'viz' in self.optical_flow:
                    for ctx in optical_flow.keys():
                        write_image('%s_%s(%d)_pred_viz.png' % (filename, key, ctx),
                                    viz_optical_flow(optical_flow[ctx]))

            if key.startswith('mask'):
                if is_dict(predictions[key]):
                    data[key] = {k: v[i].cpu() for k, v in predictions[key].items()}
                    for ctx in data[key].keys():
                        write_image('%s_%s(%d)_pred_viz.png' % (filename, key, ctx), predictions[key][ctx][0])
                elif is_list(predictions[key]):
                    data[key] = [v[i].cpu() for k, v in predictions[key]]
                    for ctx in data[key]:
                        write_image('%s_%s(%d)_pred_viz.png' % (filename, key, ctx), predictions[key][ctx][0])
                else:
                    data[key] = predictions[key][i].cpu()
                    write_image('%s_%s_pred_viz.png' % (filename, key), predictions[key][0])

        if self.store_data:
            write_pickle('%s' % filename, data)

        return data