Spaces:
Runtime error
Runtime error
File size: 12,122 Bytes
fc16538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# TRI-VIDAR - Copyright 2022 Toyota Research Institute. All rights reserved.
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn
import wandb
from vidar.utils.config import cfg_has
from vidar.utils.distributed import world_size
from vidar.utils.logging import pcolor
from vidar.utils.types import is_dict, is_tensor, is_seq, is_namespace
from vidar.utils.viz import viz_depth, viz_inv_depth, viz_normals, viz_optical_flow, viz_camera
class WandbLogger:
"""
Wandb logger class to monitor training
Parameters
----------
cfg : Config
Configuration with parameters
verbose : Bool
Print information on screen if enabled
"""
def __init__(self, cfg, verbose=False):
super().__init__()
self.num_logs = {
'train': cfg_has(cfg, 'num_train_logs', 0),
'val': cfg_has(cfg, 'num_validation_logs', 0),
'test': cfg_has(cfg, 'num_test_logs', 0),
}
self._name = cfg.name if cfg_has(cfg, 'name') else None
self._dir = cfg.folder
self._entity = cfg.entity
self._project = cfg.project
self._tags = cfg_has(cfg, 'tags', '')
self._notes = cfg_has(cfg, 'notes', '')
self._id = None
self._anonymous = None
self._log_model = True
self._experiment = self._create_experiment()
self._metrics = OrderedDict()
self.only_first = cfg_has(cfg, 'only_first', False)
cfg.name = self.run_name
cfg.url = self.run_url
if verbose:
self.print()
@staticmethod
def finish():
"""Finish wandb session"""
wandb.finish()
def print(self):
"""Print information on screen"""
font_base = {'color': 'red', 'attrs': ('bold', 'dark')}
font_name = {'color': 'red', 'attrs': ('bold',)}
font_underline = {'color': 'red', 'attrs': ('underline',)}
print(pcolor('#' * 60, **font_base))
print(pcolor('### WandB: ', **font_base) + \
pcolor('{}'.format(self.run_name), **font_name))
print(pcolor('### ', **font_base) + \
pcolor('{}'.format(self.run_url), **font_underline))
print(pcolor('#' * 60, **font_base))
def __getstate__(self):
"""Get the current logger state"""
state = self.__dict__.copy()
state['_id'] = self._experiment.id if self._experiment is not None else None
state['_experiment'] = None
return state
def _create_experiment(self):
"""Creates and returns a new experiment"""
experiment = wandb.init(
name=self._name, dir=self._dir, project=self._project,
anonymous=self._anonymous, reinit=True, id=self._id, notes=self._notes,
resume='allow', tags=self._tags, entity=self._entity
)
wandb.run.save()
return experiment
def watch(self, model: nn.Module, log='gradients', log_freq=100):
"""Watch training parameters"""
self.experiment.watch(model, log=log, log_freq=log_freq)
@property
def experiment(self):
"""Returns the experiment (creates a new if it doesn't exist)"""
if self._experiment is None:
self._experiment = self._create_experiment()
return self._experiment
@property
def run_name(self):
"""Returns run name"""
return wandb.run.name if self._experiment else None
@property
def run_url(self):
"""Returns run URL"""
return f'https://app.wandb.ai/' \
f'{wandb.run.entity}/' \
f'{wandb.run.project}/runs/' \
f'{wandb.run.id}' if self._experiment else None
def log_config(self, cfg):
"""Log model configuration"""
cfg = recursive_convert_config(deepcopy(cfg))
self.experiment.config.update(cfg, allow_val_change=True)
def log_metrics(self, metrics):
"""Log training metrics"""
self._metrics.update(metrics)
if 'epochs' in metrics or 'samples' in metrics:
self.experiment.log(self._metrics)
self._metrics.clear()
def log_images(self, batch, output, prefix, ontology=None):
"""
Log images depending on its nature
Parameters
----------
batch : Dict
Dictionary containing batch information
output : Dict
Dictionary containing output information
prefix : String
Prefix string for the log name
ontology : Dict
Dictionary with ontology information
"""
for data, suffix in zip([batch, output['predictions']], ['-gt', '-pred']):
for key in data.keys():
if key.startswith('rgb'):
self._metrics.update(log_rgb(
key, prefix + suffix, data, only_first=self.only_first))
elif key.startswith('depth'):
self._metrics.update(log_depth(
key, prefix + suffix, data, only_first=self.only_first))
elif key.startswith('inv_depth'):
self._metrics.update(log_inv_depth(
key, prefix + suffix, data, only_first=self.only_first))
elif 'normals' in key:
self._metrics.update(log_normals(
key, prefix + suffix, data, only_first=self.only_first))
elif key.startswith('stddev'):
self._metrics.update(log_stddev(
key, prefix + suffix, data, only_first=self.only_first))
elif key.startswith('logvar'):
self._metrics.update(log_logvar(
key, prefix + suffix, data, only_first=self.only_first))
elif 'optical_flow' in key:
self._metrics.update(log_optical_flow(
key, prefix + suffix, data, only_first=self.only_first))
elif 'mask' in key or 'valid' in key:
self._metrics.update(log_rgb(
key, prefix, data, only_first=self.only_first))
# elif 'camera' in key:
# self._metrics.update(log_camera(
# key, prefix + suffix, data, only_first=self.only_first))
# elif 'uncertainty' in key:
# self._metrics.update(log_uncertainty(key, prefix, data))
# elif 'semantic' in key and ontology is not None:
# self._metrics.update(log_semantic(key, prefix, data, ontology=ontology))
# if 'scene_flow' in key:
# self._metrics.update(log_scene_flow(key, prefix_idx, data))
# elif 'score' in key:
# # Log score as image heatmap
# self._metrics.update(log_keypoint_score(key, prefix, data))
def log_data(self, mode, batch, output, dataset, prefix, ontology=None):
"""Helper function used to log images"""
idx = batch['idx'][0]
num_logs = self.num_logs[mode]
if num_logs > 0:
interval = (len(dataset) // world_size() // num_logs) * world_size()
if interval == 0 or (idx % interval == 0 and idx < interval * num_logs):
prefix = '{}-{}-{}'.format(mode, prefix, batch['idx'][0].item())
# batch, output = prepare_logging(batch, output)
self.log_images(batch, output, prefix, ontology=ontology)
def recursive_convert_config(cfg):
"""Convert configuration to dictionary recursively"""
cfg = cfg.__dict__
for key, val in cfg.items():
if is_namespace(val):
cfg[key] = recursive_convert_config(val)
return cfg
def prep_image(key, prefix, image):
"""Prepare image for logging"""
if is_tensor(image):
if image.dim() == 2:
image = image.unsqueeze(0)
if image.dim() == 4:
image = image[0]
image = image.detach().permute(1, 2, 0).cpu().numpy()
prefix_key = '{}-{}'.format(prefix, key)
return {prefix_key: wandb.Image(image, caption=key)}
def log_sequence(key, prefix, data, i, only_first, fn):
"""Logs a sequence of images (list, tuple or dict)"""
log = {}
if is_dict(data):
for ctx, dict_val in data.items():
if is_seq(dict_val):
if only_first:
dict_val = dict_val[:1]
for idx, list_val in enumerate(dict_val):
if list_val.dim() == 5:
for j in range(list_val.shape[1]):
log.update(fn('%s(%s_%d)_%d' % (key, str(ctx), j, idx), prefix, list_val[:, j], i))
else:
log.update(fn('%s(%s)_%d' % (key, str(ctx), idx), prefix, list_val, i))
else:
if dict_val.dim() == 5:
for j in range(dict_val.shape[1]):
log.update(fn('%s(%s_%d)' % (key, str(ctx), j), prefix, dict_val[:, j], i))
else:
log.update(fn('%s(%s)' % (key, str(ctx)), prefix, dict_val, i))
elif is_seq(data):
if only_first:
data = data[:1]
for idx, list_val in enumerate(data):
log.update(fn('%s_%d' % (key, idx), prefix, list_val, i))
else:
log.update(fn('%s' % key, prefix, data, i))
return log
def log_rgb(key, prefix, batch, i=0, only_first=None):
"""Log RGB image"""
rgb = batch[key] if is_dict(batch) else batch
if is_seq(rgb) or is_dict(rgb):
return log_sequence(key, prefix, rgb, i, only_first, log_rgb)
return prep_image(key, prefix, rgb[i].clamp(min=0.0, max=1.0))
def log_depth(key, prefix, batch, i=0, only_first=None):
"""Log depth map"""
depth = batch[key] if is_dict(batch) else batch
if is_seq(depth) or is_dict(depth):
return log_sequence(key, prefix, depth, i, only_first, log_depth)
return prep_image(key, prefix, viz_depth(depth[i], filter_zeros=True))
def log_inv_depth(key, prefix, batch, i=0, only_first=None):
"""Log inverse depth map"""
inv_depth = batch[key] if is_dict(batch) else batch
if is_seq(inv_depth) or is_dict(inv_depth):
return log_sequence(key, prefix, inv_depth, i, only_first, log_inv_depth)
return prep_image(key, prefix, viz_inv_depth(inv_depth[i]))
def log_normals(key, prefix, batch, i=0, only_first=None):
"""Log normals"""
normals = batch[key] if is_dict(batch) else batch
if is_seq(normals) or is_dict(normals):
return log_sequence(key, prefix, normals, i, only_first, log_normals)
return prep_image(key, prefix, viz_normals(normals[i]))
def log_optical_flow(key, prefix, batch, i=0, only_first=None):
"""Log optical flow"""
optical_flow = batch[key] if is_dict(batch) else batch
if is_seq(optical_flow) or is_dict(optical_flow):
return log_sequence(key, prefix, optical_flow, i, only_first, log_optical_flow)
return prep_image(key, prefix, viz_optical_flow(optical_flow[i]))
def log_stddev(key, prefix, batch, i=0, only_first=None):
"""Log standard deviation"""
stddev = batch[key] if is_dict(batch) else batch
if is_seq(stddev) or is_dict(stddev):
return log_sequence(key, prefix, stddev, i, only_first, log_stddev)
return prep_image(key, prefix, viz_inv_depth(stddev[i], colormap='jet'))
def log_logvar(key, prefix, batch, i=0, only_first=None):
"""Log standard deviation"""
logvar = batch[key] if is_dict(batch) else batch
if is_seq(logvar) or is_dict(logvar):
return log_sequence(key, prefix, logvar, i, only_first, log_logvar)
return prep_image(key, prefix, viz_inv_depth(torch.exp(logvar[i]), colormap='jet'))
def log_camera(key, prefix, batch, i=0, only_first=None):
"""Log camera"""
camera = batch[key] if is_dict(batch) else batch
if is_seq(camera) or is_dict(camera):
return log_sequence(key, prefix, camera, i, only_first, log_camera)
return prep_image(key, prefix, viz_camera(camera[i]))
|