Spaces:
Runtime error
Runtime error
File size: 7,670 Bytes
fc16538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# TRI-VIDAR - Copyright 2022 Toyota Research Institute. All rights reserved.
import torch
from torch_scatter import scatter_min
from vidar.geometry.camera import Camera
from vidar.utils.tensor import unnorm_pixel_grid
class CameraFull(Camera):
"""Camera class with additional functionality"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.convert_matrix = torch.tensor(
[[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]],
dtype=torch.float32,
).unsqueeze(0)
@staticmethod
def from_list(cams):
"""Create cameras from a list"""
K = torch.cat([cam.K for cam in cams], 0)
Twc = torch.cat([cam.Twc.T for cam in cams], 0)
return CameraFull(K=K, Twc=Twc, hw=cams[0].hw)
def switch(self):
"""Switch camera between conventions"""
T = self.convert_matrix.to(self.device)
Twc = T @ self.Twc.T @ T
return type(self)(K=self.K, Twc=Twc, hw=self.hw)
def bwd(self):
"""Switch camera to the backwards convention"""
T = self.convert_matrix.to(self.device)
Tcw = T @ self.Twc.T @ T
return type(self)(K=self.K, Tcw=Tcw, hw=self.hw)
def fwd(self):
"""Switch camera to the forward convention"""
T = self.convert_matrix.to(self.device)
Twc = T @ self.Tcw.T @ T
return type(self)(K=self.K, Twc=Twc, hw=self.hw)
def look_at(self, at, up=torch.Tensor([0, 1, 0])):
"""
Set a direction for the camera to point (in-place)
Parameters
----------
at : torch.Tensor
Where the camera should be pointing at [B,3]
up : torch.Tensor
Up direction [B,3]
"""
eps = 1e-5
eye = self.Tcw.T[:, :3, -1]
at = at.unsqueeze(0)
up = up.unsqueeze(0).to(at.device)
z_axis = at - eye
z_axis /= z_axis.norm(dim=-1, keepdim=True) + eps
up = up.expand(z_axis.shape)
x_axis = torch.cross(up, z_axis)
x_axis /= x_axis.norm(dim=-1, keepdim=True) + eps
y_axis = torch.cross(z_axis, x_axis)
y_axis /= y_axis.norm(dim=-1, keepdim=True) + eps
R = torch.stack((x_axis, y_axis, z_axis), dim=-1)
Tcw = self.Tcw
Tcw.T[:, :3, :3] = R
self.Twc = Tcw.inverse()
def get_origin(self, flatten=False):
"""Return camera origin"""
orig = self.Tcw.T[:, :3, -1].view(len(self), 3, 1, 1).repeat(1, 1, *self.hw)
if flatten:
orig = orig.reshape(len(self), 3, -1).permute(0, 2, 1)
return orig
def get_viewdirs(self, normalize=False, flatten=False, to_world=False):
"""Return camera viewing rays"""
ones = torch.ones((len(self), 1, *self.hw), dtype=self.dtype, device=self.device)
rays = self.reconstruct_depth_map(ones, to_world=False)
if normalize:
rays = rays / torch.norm(rays, dim=1).unsqueeze(1)
if to_world:
rays = self.to_world(rays).reshape(len(self), 3, *self.hw)
if flatten:
rays = rays.reshape(len(self), 3, -1).permute(0, 2, 1)
return rays
def get_render_rays(self, near=None, far=None, n_rays=None, gt=None):
"""
Get render rays
Parameters
----------
near : Float
Near plane
far : Float
Far plane
n_rays : Int
Number of rays
gt : torch.Tensor
Ground-truth values for concatenation
Returns
-------
rays : torch.Tensor
Camera viewing rays
"""
b = len(self)
ones = torch.ones((b, 1, *self.hw), dtype=self.dtype, device=self.device)
rays = self.reconstruct_depth_map(ones, to_world=False)
rays = rays / torch.norm(rays, dim=1).unsqueeze(1)
rays[:, 1] = - rays[:, 1]
rays[:, 2] = - rays[:, 2]
orig = self.pose[:, :3, -1].view(b, 3, 1, 1).repeat(1, 1, *self.hw)
rays = self.no_translation().inverted_pose().to_world(rays).reshape(b, 3, *self.hw)
info = [orig, rays]
if near is not None:
info = info + [near * ones]
if far is not None:
info = info + [far * ones]
if gt is not None:
info = info + [gt]
rays = torch.cat(info, 1)
rays = rays.permute(0, 2, 3, 1).reshape(b, -1, rays.shape[1])
if n_rays is not None:
idx = torch.randint(0, self.n_pixels, (n_rays,))
rays = rays[:, idx, :]
return rays
def get_plucker(self):
"""Get plucker vectors"""
b = len(self)
ones = torch.ones((b, 1, *self.hw), dtype=self.dtype, device=self.device)
rays = self.reconstruct_depth_map(ones, to_world=False)
rays = rays / torch.norm(rays, dim=1).unsqueeze(1)
orig = self.Tcw.T[:, :3, -1].view(b, 3, 1, 1).repeat(1, 1, *self.hw)
orig = orig.view(1, 3, -1).permute(0, 2, 1)
rays = rays.view(1, 3, -1).permute(0, 2, 1)
cross = torch.cross(orig, rays, dim=-1)
plucker = torch.cat((rays, cross), dim=-1)
return plucker
def project_pointcloud(self, pcl_src, rgb_src, thr=1):
"""
Project pointcloud to the camera plane
Parameters
----------
pcl_src : torch.Tensor
Input 3D pointcloud
rgb_src : torch.Tensor
Pointcloud color information
thr : Int
Threshold for the number of valid points
Returns
-------
rgb_tgt : torch.Tensor
Projected image [B,3,H,W]
depth_tgt : torch.Tensor
Projected depth map [B,1,H,W]
"""
if rgb_src.dim() == 4:
rgb_src = rgb_src.view(*rgb_src.shape[:2], -1)
# Get projected coordinates and depth values
uv_all, z_all = self.project_points(pcl_src, return_z=True, from_world=True)
rgbs_tgt, depths_tgt = [], []
b = pcl_src.shape[0]
for i in range(b):
uv, z = uv_all[i].reshape(-1, 2), z_all[i].reshape(-1, 1)
# Remove out-of-bounds coordinates and points behind the camera
idx = (uv[:, 0] >= -1) & (uv[:, 0] <= 1) & \
(uv[:, 1] >= -1) & (uv[:, 1] <= 1) & (z[:, 0] > 0.0)
# Unormalize and stack coordinates for scatter operation
uv = (unnorm_pixel_grid(uv[idx], self.hw)).round().long()
uv = uv[:, 0] + uv[:, 1] * self.hw[1]
# Min scatter operation (only keep the closest depth)
depth_tgt = 1e10 * torch.ones((self.hw[0] * self.hw[1], 1), device=pcl_src.device)
depth_tgt, argmin = scatter_min(src=z[idx], index=uv.unsqueeze(1), dim=0, out=depth_tgt)
depth_tgt[depth_tgt == 1e10] = 0.
num_valid = (depth_tgt > 0).sum()
if num_valid > thr:
# Substitute invalid values with zero
invalid = argmin == argmin.max()
argmin[invalid] = 0
rgb_tgt = rgb_src[i].permute(1, 0)[idx][argmin]
rgb_tgt[invalid] = -1
else:
rgb_tgt = -1 * torch.ones(1, self.n_pixels, 3, device=self.device, dtype=self.dtype)
# Reshape outputs
rgb_tgt = rgb_tgt.reshape(1, self.hw[0], self.hw[1], 3).permute(0, 3, 1, 2)
depth_tgt = depth_tgt.reshape(1, 1, self.hw[0], self.hw[1])
rgbs_tgt.append(rgb_tgt)
depths_tgt.append(depth_tgt)
rgb_tgt = torch.cat(rgbs_tgt, 0)
depth_tgt = torch.cat(depths_tgt, 0)
return rgb_tgt, depth_tgt
|