|
import os |
|
from pytorch_lightning import LightningModule, Trainer |
|
from pytorch_lightning.callbacks import Callback, RichProgressBar, ModelCheckpoint |
|
|
|
|
|
def build_callbacks(cfg, logger=None, phase='test', **kwargs): |
|
callbacks = [] |
|
logger = logger |
|
|
|
|
|
callbacks.append(progressBar()) |
|
|
|
|
|
if phase == 'train': |
|
callbacks.extend(getCheckpointCallback(cfg, logger=logger, **kwargs)) |
|
|
|
return callbacks |
|
|
|
def getCheckpointCallback(cfg, logger=None, **kwargs): |
|
callbacks = [] |
|
|
|
metric_monitor = { |
|
"loss_total": "total/train", |
|
"Train_jf": "recons/text2jfeats/train", |
|
"Val_jf": "recons/text2jfeats/val", |
|
"Train_rf": "recons/text2rfeats/train", |
|
"Val_rf": "recons/text2rfeats/val", |
|
"APE root": "Metrics/APE_root", |
|
"APE mean pose": "Metrics/APE_mean_pose", |
|
"AVE root": "Metrics/AVE_root", |
|
"AVE mean pose": "Metrics/AVE_mean_pose", |
|
"R_TOP_1": "Metrics/R_precision_top_1", |
|
"R_TOP_2": "Metrics/R_precision_top_2", |
|
"R_TOP_3": "Metrics/R_precision_top_3", |
|
"gt_R_TOP_3": "Metrics/gt_R_precision_top_3", |
|
"FID": "Metrics/FID", |
|
"gt_FID": "Metrics/gt_FID", |
|
"Diversity": "Metrics/Diversity", |
|
"MM dist": "Metrics/Matching_score", |
|
"Accuracy": "Metrics/accuracy", |
|
} |
|
callbacks.append( |
|
progressLogger(logger,metric_monitor=metric_monitor,log_every_n_steps=1)) |
|
|
|
|
|
checkpointParams = { |
|
'dirpath': os.path.join(cfg.FOLDER_EXP, "checkpoints"), |
|
'filename': "{epoch}", |
|
'monitor': "step", |
|
'mode': "max", |
|
'every_n_epochs': cfg.LOGGER.VAL_EVERY_STEPS, |
|
'save_top_k': 8, |
|
'save_last': True, |
|
'save_on_train_epoch_end': True |
|
} |
|
callbacks.append(ModelCheckpoint(**checkpointParams)) |
|
|
|
|
|
checkpointParams.update({ |
|
'every_n_epochs': |
|
cfg.LOGGER.VAL_EVERY_STEPS * 10, |
|
'save_top_k': |
|
-1, |
|
'save_last': |
|
False |
|
}) |
|
callbacks.append(ModelCheckpoint(**checkpointParams)) |
|
|
|
metrics = cfg.METRIC.TYPE |
|
metric_monitor_map = { |
|
'TemosMetric': { |
|
'Metrics/APE_root': { |
|
'abbr': 'APEroot', |
|
'mode': 'min' |
|
}, |
|
}, |
|
'TM2TMetrics': { |
|
'Metrics/FID': { |
|
'abbr': 'FID', |
|
'mode': 'min' |
|
}, |
|
'Metrics/R_precision_top_3': { |
|
'abbr': 'R3', |
|
'mode': 'max' |
|
} |
|
}, |
|
'MRMetrics': { |
|
'Metrics/MPJPE': { |
|
'abbr': 'MPJPE', |
|
'mode': 'min' |
|
} |
|
}, |
|
'HUMANACTMetrics': { |
|
'Metrics/Accuracy': { |
|
'abbr': 'Accuracy', |
|
'mode': 'max' |
|
} |
|
}, |
|
'UESTCMetrics': { |
|
'Metrics/Accuracy': { |
|
'abbr': 'Accuracy', |
|
'mode': 'max' |
|
} |
|
}, |
|
'UncondMetrics': { |
|
'Metrics/FID': { |
|
'abbr': 'FID', |
|
'mode': 'min' |
|
} |
|
} |
|
} |
|
|
|
checkpointParams.update({ |
|
'every_n_epochs': cfg.LOGGER.VAL_EVERY_STEPS, |
|
'save_top_k': 1, |
|
}) |
|
|
|
for metric in metrics: |
|
if metric in metric_monitor_map.keys(): |
|
metric_monitors = metric_monitor_map[metric] |
|
|
|
|
|
if cfg.TRAIN.STAGE == 'vae' and metric == 'TM2TMetrics': |
|
del metric_monitors['Metrics/R_precision_top_3'] |
|
|
|
for metric_monitor in metric_monitors: |
|
checkpointParams.update({ |
|
'filename': |
|
metric_monitor_map[metric][metric_monitor]['mode'] |
|
+ "-" + |
|
metric_monitor_map[metric][metric_monitor]['abbr'] |
|
+ "{ep}", |
|
'monitor': |
|
metric_monitor, |
|
'mode': |
|
metric_monitor_map[metric][metric_monitor]['mode'], |
|
}) |
|
callbacks.append( |
|
ModelCheckpoint(**checkpointParams)) |
|
return callbacks |
|
|
|
class progressBar(RichProgressBar): |
|
def __init__(self, ): |
|
super().__init__() |
|
|
|
def get_metrics(self, trainer, model): |
|
|
|
items = super().get_metrics(trainer, model) |
|
items.pop("v_num", None) |
|
return items |
|
|
|
class progressLogger(Callback): |
|
def __init__(self, |
|
logger, |
|
metric_monitor: dict, |
|
precision: int = 3, |
|
log_every_n_steps: int = 1): |
|
|
|
self.logger = logger |
|
self.metric_monitor = metric_monitor |
|
self.precision = precision |
|
self.log_every_n_steps = log_every_n_steps |
|
|
|
def on_train_start(self, trainer: Trainer, pl_module: LightningModule, |
|
**kwargs) -> None: |
|
self.logger.info("Training started") |
|
|
|
def on_train_end(self, trainer: Trainer, pl_module: LightningModule, |
|
**kwargs) -> None: |
|
self.logger.info("Training done") |
|
|
|
def on_validation_epoch_end(self, trainer: Trainer, |
|
pl_module: LightningModule, **kwargs) -> None: |
|
if trainer.sanity_checking: |
|
self.logger.info("Sanity checking ok.") |
|
|
|
def on_train_epoch_end(self, |
|
trainer: Trainer, |
|
pl_module: LightningModule, |
|
padding=False, |
|
**kwargs) -> None: |
|
metric_format = f"{{:.{self.precision}e}}" |
|
line = f"Epoch {trainer.current_epoch}" |
|
if padding: |
|
line = f"{line:>{len('Epoch xxxx')}}" |
|
|
|
if trainer.current_epoch % self.log_every_n_steps == 0: |
|
metrics_str = [] |
|
|
|
losses_dict = trainer.callback_metrics |
|
for metric_name, dico_name in self.metric_monitor.items(): |
|
if dico_name in losses_dict: |
|
metric = losses_dict[dico_name].item() |
|
metric = metric_format.format(metric) |
|
metric = f"{metric_name} {metric}" |
|
metrics_str.append(metric) |
|
|
|
line = line + ": " + " ".join(metrics_str) |
|
|
|
self.logger.info(line) |
|
|