Spaces:
Sleeping
Sleeping
fkonovalenko
commited on
Commit
•
e6dc8c2
1
Parent(s):
ea8ee61
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import json
|
5 |
+
from ml import VacancyAnalyzer
|
6 |
+
|
7 |
+
|
8 |
+
class GlobalState:
|
9 |
+
"""
|
10 |
+
Class to store global variables
|
11 |
+
"""
|
12 |
+
result_file_path = os.path.join(os.path.dirname(__file__), 'result/archive.json')
|
13 |
+
result_dir = os.path.join(os.path.dirname(__file__), 'result')
|
14 |
+
bert_path = os.path.join(os.path.dirname(__file__), 'tiny.pt')
|
15 |
+
catboost_path = os.path.join(os.path.dirname(__file__), 'best_cat.joblib')
|
16 |
+
conv_classes = {0: 'low',
|
17 |
+
1: 'middle',
|
18 |
+
2: 'high'
|
19 |
+
}
|
20 |
+
default_data = {'id': 'a0000',
|
21 |
+
'emp_brand': '',
|
22 |
+
'mandatory': '',
|
23 |
+
'additional': '',
|
24 |
+
'comp_stages': '',
|
25 |
+
'work_conditions': '',
|
26 |
+
'conversion': 0,
|
27 |
+
'conversion_class': 'unknown'
|
28 |
+
}
|
29 |
+
data = None
|
30 |
+
|
31 |
+
|
32 |
+
def cid(txt):
|
33 |
+
GlobalState.data['id'] = txt
|
34 |
+
|
35 |
+
|
36 |
+
def cbrand(txt):
|
37 |
+
GlobalState.data['emp_brand'] = txt
|
38 |
+
|
39 |
+
|
40 |
+
def cmand(txt):
|
41 |
+
GlobalState.data['mandatory'] = txt
|
42 |
+
|
43 |
+
|
44 |
+
def cadd(txt):
|
45 |
+
GlobalState.data['additional'] = txt
|
46 |
+
|
47 |
+
|
48 |
+
def ccomp(txt):
|
49 |
+
GlobalState.data['comp_stages'] = txt
|
50 |
+
|
51 |
+
|
52 |
+
def ccond(txt):
|
53 |
+
GlobalState.data['work_conditions'] = txt
|
54 |
+
|
55 |
+
|
56 |
+
def submit(chk):
|
57 |
+
# print(GlobalState.data)
|
58 |
+
return gr.update("Run!", visible=True)
|
59 |
+
|
60 |
+
|
61 |
+
def append_to_json(_dict, path):
|
62 |
+
with open(path, 'ab+') as f:
|
63 |
+
f.seek(0, 2)
|
64 |
+
if f.tell() == 0:
|
65 |
+
f.write(json.dumps([_dict]).encode())
|
66 |
+
else:
|
67 |
+
f.seek(-1, 2)
|
68 |
+
f.truncate()
|
69 |
+
f.write(' , '.encode())
|
70 |
+
f.write(json.dumps(_dict).encode())
|
71 |
+
f.write(']'.encode())
|
72 |
+
|
73 |
+
|
74 |
+
def predict(btn):
|
75 |
+
analyzer = VacancyAnalyzer(GlobalState.bert_path, GlobalState.catboost_path, GlobalState.data)
|
76 |
+
status, result = analyzer.classify()
|
77 |
+
gr.Info(status)
|
78 |
+
if result != 'unknown':
|
79 |
+
result = GlobalState.conv_classes[int(result[0])]
|
80 |
+
out_2 = f'Predicted by vacancy description conversion - {result}'
|
81 |
+
GlobalState.data['conversion_class'] = result
|
82 |
+
fid = GlobalState.result_file_path
|
83 |
+
append_to_json(GlobalState.data, fid)
|
84 |
+
GlobalState.data = GlobalState.default_data
|
85 |
+
link = GlobalState.result_file_path
|
86 |
+
return gr.update(value=out_2), gr.update(link="/file=" + link, visible=True)
|
87 |
+
|
88 |
+
|
89 |
+
def save(btn):
|
90 |
+
link = GlobalState.result_file_path
|
91 |
+
return gr.update(link="/file=" + link)
|
92 |
+
|
93 |
+
|
94 |
+
def main():
|
95 |
+
shutil.rmtree(os.path.join(os.path.dirname(__file__), 'result/'), ignore_errors=True)
|
96 |
+
os.mkdir(os.path.join(os.path.dirname(__file__), 'result/'))
|
97 |
+
GlobalState.data = GlobalState.default_data
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
with gr.Tab("Load"):
|
100 |
+
with gr.Row():
|
101 |
+
gr.Markdown(
|
102 |
+
"""
|
103 |
+
# Input the text description of the position
|
104 |
+
# 👾👾👾 Then press **Run!** 👾👾👾
|
105 |
+
""")
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
with gr.Row():
|
109 |
+
brand = gr.Textbox(label='Company name', value=None)
|
110 |
+
with gr.Row():
|
111 |
+
vid = gr.Textbox(label='Position id', value=None)
|
112 |
+
with gr.Row():
|
113 |
+
req = gr.Textbox(label='Mandatory')
|
114 |
+
with gr.Column():
|
115 |
+
with gr.Row():
|
116 |
+
add = gr.Textbox(label='Additional')
|
117 |
+
with gr.Row():
|
118 |
+
comp = gr.Textbox(label='Competition stage')
|
119 |
+
with gr.Row():
|
120 |
+
cond = gr.Textbox(label='Work conditions')
|
121 |
+
|
122 |
+
with gr.Column():
|
123 |
+
with gr.Row():
|
124 |
+
with gr.Column():
|
125 |
+
ready = gr.Checkbox(label='Data Filled')
|
126 |
+
with gr.Column():
|
127 |
+
process_button = gr.Button("Run!", visible=False, interactive=True)
|
128 |
+
with gr.Row():
|
129 |
+
output_2 = gr.Textbox(label='LLM Result')
|
130 |
+
with gr.Row():
|
131 |
+
download_button = gr.Button("JSON Archive", visible=False)
|
132 |
+
|
133 |
+
brand.change(cbrand, inputs=[brand])
|
134 |
+
vid.change(cid, inputs=[vid])
|
135 |
+
req.change(cmand, inputs=[req])
|
136 |
+
add.change(cadd, inputs=[add])
|
137 |
+
comp.change(ccomp, inputs=[comp])
|
138 |
+
cond.change(ccond, inputs=[cond])
|
139 |
+
ready.change(submit, inputs=[ready], outputs=[process_button])
|
140 |
+
process_button.click(predict, inputs=[process_button], outputs=[output_2, download_button],
|
141 |
+
show_progress='full')
|
142 |
+
download_button.click(save, inputs=[download_button], outputs=[download_button])
|
143 |
+
|
144 |
+
demo.launch(share=True, allowed_paths=[GlobalState.result_dir])
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
main()
|
llm.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import AutoTokenizer, AutoModel, BertConfig
|
4 |
+
|
5 |
+
|
6 |
+
class TransformerRegrModel(nn.Module):
|
7 |
+
def __init__(self, base_transformer_model: str, num_classes: int):
|
8 |
+
super().__init__()
|
9 |
+
self.tr_model = base_transformer_model
|
10 |
+
self.num = num_classes
|
11 |
+
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
12 |
+
|
13 |
+
if self.tr_model not in ['rubert', 'base']:
|
14 |
+
raise Exception('unknown model')
|
15 |
+
elif self.tr_model == 'rubert':
|
16 |
+
self.tokenizer = AutoTokenizer.from_pretrained("cointegrated/rubert-tiny2")
|
17 |
+
self.config = BertConfig.from_pretrained("cointegrated/rubert-tiny2", output_hidden_states=True,
|
18 |
+
output_attentions=True)
|
19 |
+
elif self.tr_model == 'base':
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained("ai-forever/ruBert-base", model_max_length=512)
|
21 |
+
self.config = BertConfig.from_pretrained("ai-forever/ruBert-base", output_hidden_states=True,
|
22 |
+
output_attentions=True)
|
23 |
+
self.model = AutoModel.from_config(self.config)
|
24 |
+
self.a1 = nn.ReLU()
|
25 |
+
self.classifier_1 = nn.Linear(self.model.pooler.dense.out_features, self.num)
|
26 |
+
# self.classifier_dropout = nn.Dropout(p=0.2)
|
27 |
+
# self.classifier_2 = nn.Linear(128, self.num)
|
28 |
+
|
29 |
+
def forward(self, inputs):
|
30 |
+
t = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt')
|
31 |
+
tokens = self.tokenizer.convert_ids_to_tokens(t['input_ids'][0])
|
32 |
+
model_output = self.model(**{k: v.to(self.device) for k, v in t.items()})
|
33 |
+
attentions = torch.cat(model_output['attentions']).to('cpu')
|
34 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
35 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
36 |
+
outputs = self.a1(embeddings)
|
37 |
+
outputs = self.classifier_1(outputs)
|
38 |
+
# outputs = self.classifier_dropout(outputs)
|
39 |
+
# outputs = self.a1(outputs)
|
40 |
+
# outputs = self.classifier_dropout(outputs)
|
41 |
+
# outputs = self.classifier_2(outputs)
|
42 |
+
|
43 |
+
return outputs, tokens, attentions
|
ml.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from catboost import Pool
|
3 |
+
import joblib
|
4 |
+
import torch
|
5 |
+
import re
|
6 |
+
|
7 |
+
from llm import TransformerRegrModel
|
8 |
+
|
9 |
+
|
10 |
+
class VacancyAnalyzer:
|
11 |
+
def __init__(self, transformer_path: str, catboost_path: str, inputs: dict):
|
12 |
+
self.transformer_path = transformer_path
|
13 |
+
self.catboost_path = catboost_path
|
14 |
+
self.inputs = pd.DataFrame(inputs, index=[0]).drop(columns=['conversion', 'conversion_class', 'id'], axis=1)
|
15 |
+
self.cat_features = ['profession', 'grade', 'location']
|
16 |
+
self.text_features = ['emp_brand', 'mandatory', 'additional', 'comp_stages', 'work_conditions']
|
17 |
+
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
18 |
+
|
19 |
+
def __cleaner__(self, txt: str) -> str:
|
20 |
+
txt = re.sub(r'\_(.*?)\_', r'', txt)
|
21 |
+
txt = re.sub(r'([\n\t]*)', r'', txt)
|
22 |
+
return txt
|
23 |
+
|
24 |
+
def predict(self) -> float:
|
25 |
+
df = self.inputs.drop(columns=self.text_features, axis=1)
|
26 |
+
pool = Pool(df, cat_features=self.cat_features)
|
27 |
+
regressor = joblib.load(self.catboost_path)
|
28 |
+
prediction = regressor.predict(pool).tolist()
|
29 |
+
return prediction[0]
|
30 |
+
|
31 |
+
def classify(self) -> tuple:
|
32 |
+
df = self.inputs[self.text_features]
|
33 |
+
description = df[self.text_features[0]].values[0] + ' '
|
34 |
+
for t in self.text_features[1:]:
|
35 |
+
description += df[t].values[0]
|
36 |
+
description += ' '
|
37 |
+
description = self.__cleaner__(description)
|
38 |
+
if len(description) < 100:
|
39 |
+
return 'Too short text', 'unknown'
|
40 |
+
tbert = TransformerRegrModel('rubert', 3)
|
41 |
+
tbert.load_state_dict(torch.load(self.transformer_path, map_location=torch.device(self.device)))
|
42 |
+
tbert.to(self.device)
|
43 |
+
tbert.eval()
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs, _, _ = tbert(description)
|
46 |
+
prediction = torch.argmax(outputs, 1).cpu().numpy()
|
47 |
+
return 'Text analyzing finished', prediction
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.0.3
|
2 |
+
joblib==1.3.2
|
3 |
+
torch==2.0.1+cpu
|
4 |
+
catboost==1.2
|
5 |
+
transformers==4.40.0
|
6 |
+
gradio==4.27.0
|