import gradio as gr import os import shutil import json from ml import VacancyAnalyzer class GlobalState: """ Class to store global variables """ result_file_path = os.path.join(os.path.dirname(__file__), 'result/archive.json') result_dir = os.path.join(os.path.dirname(__file__), 'result') bert_path = os.path.join(os.path.dirname(__file__), 'tiny.pt') catboost_path = os.path.join(os.path.dirname(__file__), 'best_cat.joblib') conv_classes = {0: 'low', 1: 'middle', 2: 'high' } default_data = {'id': 'a0000', 'emp_brand': '', 'mandatory': '', 'additional': '', 'comp_stages': '', 'work_conditions': '', 'conversion': 0, 'conversion_class': 'unknown' } data = None def cid(txt): GlobalState.data['id'] = txt def cbrand(txt): GlobalState.data['emp_brand'] = txt def cmand(txt): GlobalState.data['mandatory'] = txt def cadd(txt): GlobalState.data['additional'] = txt def ccomp(txt): GlobalState.data['comp_stages'] = txt def ccond(txt): GlobalState.data['work_conditions'] = txt def submit(chk): # print(GlobalState.data) return gr.update("Run!", visible=True) def append_to_json(_dict, path): with open(path, 'ab+') as f: f.seek(0, 2) if f.tell() == 0: f.write(json.dumps([_dict]).encode()) else: f.seek(-1, 2) f.truncate() f.write(' , '.encode()) f.write(json.dumps(_dict).encode()) f.write(']'.encode()) def predict(btn): analyzer = VacancyAnalyzer(GlobalState.bert_path, GlobalState.catboost_path, GlobalState.data) status, result = analyzer.classify() gr.Info(status) if result != 'unknown': result = GlobalState.conv_classes[int(result[0])] out_2 = f'Predicted by vacancy description conversion - {result}' GlobalState.data['conversion_class'] = result fid = GlobalState.result_file_path append_to_json(GlobalState.data, fid) GlobalState.data = GlobalState.default_data link = GlobalState.result_file_path return gr.update(value=out_2), gr.update(link="/file=" + link, visible=True) def save(btn): link = GlobalState.result_file_path return gr.update(link="/file=" + link) def main(): shutil.rmtree(os.path.join(os.path.dirname(__file__), 'result/'), ignore_errors=True) os.mkdir(os.path.join(os.path.dirname(__file__), 'result/')) GlobalState.data = GlobalState.default_data with gr.Blocks() as demo: with gr.Tab("Load"): with gr.Row(): gr.Markdown( """ # Input the text description of the position # 👾👾👾 Then press **Run!** 👾👾👾 """) with gr.Row(): with gr.Column(): with gr.Row(): brand = gr.Textbox(label='Company name', value=None) with gr.Row(): vid = gr.Textbox(label='Position id', value=None) with gr.Row(): req = gr.Textbox(label='Mandatory') with gr.Column(): with gr.Row(): add = gr.Textbox(label='Additional') with gr.Row(): comp = gr.Textbox(label='Competition stage') with gr.Row(): cond = gr.Textbox(label='Work conditions') with gr.Column(): with gr.Row(): with gr.Column(): ready = gr.Checkbox(label='Data Filled') with gr.Column(): process_button = gr.Button("Run!", visible=False, interactive=True) with gr.Row(): output_2 = gr.Textbox(label='LLM Result') with gr.Row(): download_button = gr.Button("JSON Archive", visible=False) brand.change(cbrand, inputs=[brand]) vid.change(cid, inputs=[vid]) req.change(cmand, inputs=[req]) add.change(cadd, inputs=[add]) comp.change(ccomp, inputs=[comp]) cond.change(ccond, inputs=[cond]) ready.change(submit, inputs=[ready], outputs=[process_button]) process_button.click(predict, inputs=[process_button], outputs=[output_2, download_button], show_progress='full') download_button.click(save, inputs=[download_button], outputs=[download_button]) demo.launch(share=True, allowed_paths=[GlobalState.result_dir]) if __name__ == "__main__": main()