Spaces:
Runtime error
Runtime error
Fangyu Liu
commited on
Commit
·
8fc7477
1
Parent(s):
6663c9a
Update app.py
Browse files
app.py
CHANGED
@@ -46,32 +46,105 @@ Q: Which party has the second highest favor rates in 2007?
|
|
46 |
A: Let's find the row of year 2007, that's Row 3. Let's extract the numbers on Row 3: [59.0, 38.0, 45.0]. 45.0 is the second highest. 45.0 is the number of Independents. The answer is Independents.
|
47 |
{_INSTRUCTION}"""
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
|
@@ -86,7 +159,7 @@ def process_document(image, question):
|
|
86 |
table = processor_deplot.decode(predictions[0], skip_special_tokens=True)
|
87 |
|
88 |
# send prompt+table to LLM
|
89 |
-
res =
|
90 |
print (res)
|
91 |
|
92 |
description = "Demo for deplot+llm for QA or summarisation. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
|
|
|
46 |
A: Let's find the row of year 2007, that's Row 3. Let's extract the numbers on Row 3: [59.0, 38.0, 45.0]. 45.0 is the second highest. 45.0 is the number of Independents. The answer is Independents.
|
47 |
{_INSTRUCTION}"""
|
48 |
|
49 |
+
|
50 |
+
import torch
|
51 |
+
from peft import PeftModel
|
52 |
+
import transformers
|
53 |
+
import gradio as gr
|
54 |
+
|
55 |
+
assert (
|
56 |
+
"LlamaTokenizer" in transformers._import_structure["models.llama"]
|
57 |
+
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
|
58 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
59 |
+
|
60 |
+
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
61 |
+
|
62 |
+
BASE_MODEL = "decapoda-research/llama-7b-hf"
|
63 |
+
LORA_WEIGHTS = "tloen/alpaca-lora-7b"
|
64 |
+
|
65 |
+
if torch.cuda.is_available():
|
66 |
+
device = "cuda"
|
67 |
+
else:
|
68 |
+
device = "cpu"
|
69 |
+
|
70 |
+
try:
|
71 |
+
if torch.backends.mps.is_available():
|
72 |
+
device = "mps"
|
73 |
+
except:
|
74 |
+
pass
|
75 |
+
|
76 |
+
if device == "cuda":
|
77 |
+
model = LlamaForCausalLM.from_pretrained(
|
78 |
+
BASE_MODEL,
|
79 |
+
load_in_8bit=False,
|
80 |
+
torch_dtype=torch.float16,
|
81 |
+
device_map="auto",
|
82 |
+
)
|
83 |
+
model = PeftModel.from_pretrained(
|
84 |
+
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
|
85 |
+
)
|
86 |
+
elif device == "mps":
|
87 |
+
model = LlamaForCausalLM.from_pretrained(
|
88 |
+
BASE_MODEL,
|
89 |
+
device_map={"": device},
|
90 |
+
torch_dtype=torch.float16,
|
91 |
+
)
|
92 |
+
model = PeftModel.from_pretrained(
|
93 |
+
model,
|
94 |
+
LORA_WEIGHTS,
|
95 |
+
device_map={"": device},
|
96 |
+
torch_dtype=torch.float16,
|
97 |
+
)
|
98 |
+
else:
|
99 |
+
model = LlamaForCausalLM.from_pretrained(
|
100 |
+
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
|
101 |
+
)
|
102 |
+
model = PeftModel.from_pretrained(
|
103 |
+
model,
|
104 |
+
LORA_WEIGHTS,
|
105 |
+
device_map={"": device},
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
if device != "cpu":
|
110 |
+
model.half()
|
111 |
+
model.eval()
|
112 |
+
if torch.__version__ >= "2":
|
113 |
+
model = torch.compile(model)
|
114 |
+
|
115 |
+
|
116 |
+
def evaluate(
|
117 |
+
table,
|
118 |
+
question,
|
119 |
+
input=None,
|
120 |
+
temperature=0.1,
|
121 |
+
top_p=0.75,
|
122 |
+
top_k=40,
|
123 |
+
num_beams=4,
|
124 |
+
max_new_tokens=128,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
prompt = _TEMPLATE + "\n" + table + "\n" + "Q: " + question
|
128 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
129 |
+
input_ids = inputs["input_ids"].to(device)
|
130 |
+
generation_config = GenerationConfig(
|
131 |
+
temperature=temperature,
|
132 |
+
top_p=top_p,
|
133 |
+
top_k=top_k,
|
134 |
+
num_beams=num_beams,
|
135 |
+
**kwargs,
|
136 |
+
)
|
137 |
+
with torch.no_grad():
|
138 |
+
generation_output = model.generate(
|
139 |
+
input_ids=input_ids,
|
140 |
+
generation_config=generation_config,
|
141 |
+
return_dict_in_generate=True,
|
142 |
+
output_scores=True,
|
143 |
+
max_new_tokens=max_new_tokens,
|
144 |
+
)
|
145 |
+
s = generation_output.sequences[0]
|
146 |
+
output = tokenizer.decode(s)
|
147 |
+
return output.split("### Response:")[1].strip()
|
148 |
|
149 |
|
150 |
|
|
|
159 |
table = processor_deplot.decode(predictions[0], skip_special_tokens=True)
|
160 |
|
161 |
# send prompt+table to LLM
|
162 |
+
res = evaluate(table, question)
|
163 |
print (res)
|
164 |
|
165 |
description = "Demo for deplot+llm for QA or summarisation. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
|