import os import torch import openai import requests import gradio as gr import transformers from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor from peft import PeftModel ## CoT prompts def _add_markup(table): try: parts = [p.strip() for p in table.splitlines(keepends=False)] if parts[0].startswith('TITLE'): result = f"Title: {parts[0].split(' | ')[1].strip()}\n" rows = parts[1:] else: result = '' rows = parts prefixes = ['Header: '] + [f'Row {i+1}: ' for i in range(len(rows) - 1)] return result + '\n'.join(prefix + row for prefix, row in zip(prefixes, rows)) except: # just use the raw table if parsing fails return table _TABLE = """Year | Democrats | Republicans | Independents 2004 | 68.1% | 45.0% | 53.0% 2006 | 58.0% | 42.0% | 53.0% 2007 | 59.0% | 38.0% | 45.0% 2009 | 72.0% | 49.0% | 60.0% 2011 | 71.0% | 51.2% | 58.0% 2012 | 70.0% | 48.0% | 53.0% 2013 | 72.0% | 41.0% | 60.0%""" _INSTRUCTION = 'Read the table below to answer the following questions.' _TEMPLATE = f"""First read an example then the complete question for the second table. ------------ {_INSTRUCTION} {_add_markup(_TABLE)} Q: In which year republicans have the lowest favor rate? A: Let's find the column of republicans. Then let's extract the favor rates, they [45.0, 42.0, 38.0, 49.0, 51.2, 48.0, 41.0]. The smallest number is 38.0, that's Row 3. Row 3 is year 2007. The answer is 2007. Q: What is the sum of Democrats' favor rates of 2004, 2012, and 2013? A: Let's find the rows of years 2004, 2012, and 2013. We find Row 1, 6, 7. The favor dates of Demoncrats on that 3 rows are 68.1, 70.0, and 72.0. 68.1+70.0+72=210.1. The answer is 210.1. Q: By how many points do Independents surpass Republicans in the year of 2011? A: Let's find the row with year = 2011. We find Row 5. We extract Independents and Republicans' numbers. They are 58.0 and 51.2. 58.0-51.2=6.8. The answer is 6.8. Q: Which group has the overall worst performance? A: Let's sample a couple of years. In Row 1, year 2004, we find Republicans having the lowest favor rate 45.0 (since 45.0<68.1, 45.0<53.0). In year 2006, Row 2, we find Republicans having the lowest favor rate 42.0 (42.0<58.0, 42.0<53.0). The trend continues to other years. The answer is Republicans. Q: Which party has the second highest favor rates in 2007? A: Let's find the row of year 2007, that's Row 3. Let's extract the numbers on Row 3: [59.0, 38.0, 45.0]. 45.0 is the second highest. 45.0 is the number of Independents. The answer is Independents. {_INSTRUCTION}""" ## alpaca-lora # debugging... assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") BASE_MODEL = "decapoda-research/llama-7b-hf" LORA_WEIGHTS = "tloen/alpaca-lora-7b" if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass if device == "cuda": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=False, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True ) elif device == "mps": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16, ) else: model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, ) if device != "cpu": model.half() model.eval() if torch.__version__ >= "2": model = torch.compile(model) ## FLAN-UL2 HF_TOKEN = os.environ.get("API_TOKEN", None) API_URL = "https://api-inference.huggingface.co/models/google/flan-ul2" headers = {"Authorization": f"Bearer {HF_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() ## OpenAI models openai.api_key = os.environ.get("OPENAI_TOKEN", None) def set_openai_api_key(api_key): if api_key and api_key.startswith("sk-") and len(api_key) > 50: openai.api_key = api_key def get_response_from_openai(prompt, model="gpt-3.5-turbo", max_output_tokens=256): messages = [{"role": "assistant", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0.7, max_tokens=max_output_tokens, top_p=1, frequency_penalty=0, presence_penalty=0, ) ret = response.choices[0].message['content'] return ret ## deplot models model_deplot = Pix2StructForConditionalGeneration.from_pretrained("google/deplot", torch_dtype=torch.bfloat16).to(0) processor_deplot = Pix2StructProcessor.from_pretrained("google/deplot") def evaluate( table, question, llm="alpaca-lora", input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt_0shot = _INSTRUCTION + "\n" + _add_markup(table) + "\n" + "Q: " + question + "\n" + "A:" prompt = _TEMPLATE + "\n" + _add_markup(table) + "\n" + "Q: " + question + "\n" + "A:" if llm == "alpaca-lora": inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) elif llm == "flan-ul2": output = query({"inputs": prompt_0shot})[0]["generated_text"] elif llm == "gpt-3.5-turbo": try: output = get_response_from_openai(prompt_0shot) except: output = "" else: RuntimeError(f"No such LLM: {llm}") return output def process_document(image, question, llm): # image = Image.open(image) inputs = processor_deplot(images=image, text="Generate the underlying data table for the figure below:", return_tensors="pt").to(0, torch.bfloat16) predictions = model_deplot.generate(**inputs, max_new_tokens=512) table = processor_deplot.decode(predictions[0], skip_special_tokens=True).replace("<0x0A>", "\n") # send prompt+table to LLM res = evaluate(table, question, llm=llm) if llm == "alpaca-lora": return [table, res.split("A:")[-1]] else: return [table, res] theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", radius_size=gr.themes.sizes.radius_sm, font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], ) with gr.Blocks(theme=theme) as demo: with gr.Column(): gr.Markdown( """

DePlot+LLM: Multimodal chain-of-thought reasoning on plots

This is a demo of DePlot+LLM for QA and summarisation. DePlot is an image-to-text model that converts plots and charts into a textual sequence. The sequence then is used to prompt LLM for chain-of-thought reasoning. The current underlying LLMs are alpaca-lora, flan-ul2, and gpt-3.5-turbo. To use it, simply upload your image and type a question or instruction and click 'submit', or click one of the examples to load them. Read more at the links below.

""" ) with gr.Row(): with gr.Column(scale=2): input_image = gr.Image(label="Input Image", type="pil", interactive=True) #input_image.style(height=512, width=512) instruction = gr.Textbox(placeholder="Enter your instruction/question...", label="Question/Instruction") llm = gr.Dropdown(["alpaca-lora", "flan-ul2", "gpt-3.5-turbo"], label="LLM") openai_api_key_textbox = gr.Textbox(value='', placeholder="Paste your OpenAI API key (sk-...) and hit Enter (if using OpenAI models, otherwise leave empty)", show_label=False, lines=1, type='password') submit = gr.Button("Submit", variant="primary") with gr.Column(scale=2): with gr.Accordion("Show intermediate table", open=False): output_table = gr.Textbox(lines=8, label="Intermediate Table") output_text = gr.Textbox(lines=8, label="Output") gr.Examples( examples=[ ["deplot_case_study_4.png", "What are the acceptance rates?", "gpt-3.5-turbo"], ["deplot_case_study_4.png", "How does the acceptance rate change over the years?", "gpt-3.5-turbo"], ["deplot_case_study_m1.png", "Summarise the chart for me please.", "gpt-3.5-turbo"], ["deplot_case_study_m1.png", "What is the sum of numbers of Indonesia and Ireland? Remember to think step by step.", "alpaca-lora"], ["deplot_case_study_3.png", "By how much did China's growth rate drop? Think step by step.", "alpaca-lora"], ["deplot_case_study_x2.png", "Summarise the chart for me please.", "alpaca-lora"], ["deplot_case_study_4.png", "How many papers are submitted in 2020?", "flan-ul2"], #["deplot_case_study_4.png", "How many papers are submitted in 2020?", "alpaca-lora"], #["deplot_case_study_m1.png", "Summarise the chart for me please.", "alpaca-lora"], #["deplot_case_study_4.png", "acceptance rate = # accepted / #submitted . What is the acceptance rate of 2010?", "flan-ul2"], #["deplot_case_study_m1.png", "Summarise the chart for me please.", "flan-ul2"], ], cache_examples=True, inputs=[input_image, instruction, llm], outputs=[output_table, output_text], fn=process_document ) gr.Markdown( """

DePlot: One-shot visual language reasoning by plot-to-table translation

""" ) openai.api_key = "" openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox], outputs=[]) openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox], outputs=[]) submit.click(process_document, inputs=[input_image, instruction, llm], outputs=[output_table, output_text]) instruction.submit( process_document, inputs=[input_image, instruction, llm], outputs=[output_table, output_text] ) demo.queue(concurrency_count=1).launch()