Spaces:
Running
Running
File size: 4,828 Bytes
fcb2250 d7e89e5 c80b30b d7e89e5 fcb2250 3fc071b fcb2250 5937336 c80b30b fcb2250 b3c2743 fcb2250 3f6a24b c80b30b fcb2250 b3c2743 fcb2250 3f6a24b c80b30b fcb2250 df6fb26 fcb2250 c80b30b fcb2250 c80b30b fcb2250 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import spacy.displacy
import streamlit as st
from flair.models import SequenceTagger
from flair.splitter import SegtokSentenceSplitter
from colorhash import ColorHash
# st.title("Flair NER Demo")
st.set_page_config(layout="centered")
# models to choose from
model_map = {
"find Entities (default)": "ner-large",
"find Entities (18-class)": "ner-ontonotes-large",
"find Frames": "frame-large",
"find Parts-of-Speech": "pos-multi",
}
# Block 1: Users can select a model
st.subheader("Select a model")
selected_model_id = st.selectbox("This is a check box",
model_map.keys(),
label_visibility="collapsed",
)
# Block 2: Users can input text
st.subheader("Input your text here")
input_text = st.text_area('Write or Paste Text Below',
value='May visited the Eiffel Tower in Paris last May.\n\n'
'There she ran across a sign in German that read: "Dirk liebt den Eiffelturm"',
height=128,
max_chars=None,
label_visibility="collapsed")
@st.cache(allow_output_mutation=True)
def get_model(model_name):
return SequenceTagger.load(model_map[model_name])
# @st.cache(allow_output_mutation=True)
# def get_frame_definitions():
# frame_definition_map = {}
# with open('propbank_frames_3.1.txt') as infile:
# for line in infile:
# frame_definition_map[line.split('\t')[0]] = line.split('\t')[1]
#
# return frame_definition_map
def get_html(html: str):
WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
html = html.replace("\n", " ")
return WRAPPER.format(html)
def color_variant(hex_color, brightness_offset=1):
""" takes a color like #87c95f and produces a lighter or darker variant
taken from: https://chase-seibert.github.io/blog/2011/07/29/python-calculate-lighterdarker-rgb-colors.html
"""
if len(hex_color) != 7:
raise Exception("Passed %s into color_variant(), needs to be in #87c95f format." % hex_color)
rgb_hex = [hex_color[x:x + 2] for x in [1, 3, 5]]
new_rgb_int = [int(hex_value, 16) + brightness_offset for hex_value in rgb_hex]
new_rgb_int = [min([255, max([0, i])]) for i in new_rgb_int] # make sure new values are between 0 and 255
# hex() produces "0x88", we want just "88"
return "#" + "".join([hex(i)[2:] for i in new_rgb_int])
# Block 3: Output is displayed
button_clicked = st.button("**Click here** to tag the input text", key=None)
if button_clicked:
# if 'frame' in selected_model_id.lower():
# frame_definition_map = get_frame_definitions()
# get a sentence splitter and split text into sentences
splitter = SegtokSentenceSplitter()
# TODO: perhaps truncate input_text
sentences = splitter.split(input_text)
# get the model and predict
model = get_model(selected_model_id)
model.predict(sentences)
spacy_display = {"ents": [], "text": input_text, "title": None}
predicted_labels = set()
for sentence in sentences:
for prediction in sentence.get_labels():
entity_fields = {
"start": prediction.data_point.start_position + sentence.start_position,
"end": prediction.data_point.end_position + sentence.start_position,
"label": prediction.value,
}
if 'frame' in selected_model_id.lower():
id = prediction.value.split('.')[-1]
verb = ''.join(prediction.value.split('.')[:-1])
kb_url = f"https://propbank.github.io/v3.4.0/frames/{verb}.html#{verb}.{id}"
entity_fields["label"] = f'<a style="text-decoration: underline; text-decoration-style: dotted; color: inherit; font-weight: bold" href="{kb_url}">{prediction.value}</a>'
spacy_display["ents"].append(entity_fields)
predicted_labels.add(entity_fields["label"])
# create colors for each label
colors = {}
for label in predicted_labels:
colors[label] = color_variant(ColorHash(label).hex, brightness_offset=85)
# use displacy to render
html = spacy.displacy.render(spacy_display,
style="ent",
minify=True,
manual=True,
options={
"colors": colors,
},
)
style = "<style>mark.entity { display: inline-block }</style>"
st.subheader("Tagged text")
st.write(f"{style}{get_html(html)}", unsafe_allow_html=True)
|