Spaces:
Build error
Build error
flamehaze1115
commited on
Commit
•
de49b4d
1
Parent(s):
d370864
Upload gradio_app.py
Browse files- gradio_app.py +348 -0
gradio_app.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import fire
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import time
|
10 |
+
import numpy as np
|
11 |
+
from rembg import remove
|
12 |
+
from segment_anything import sam_model_registry, SamPredictor
|
13 |
+
|
14 |
+
import os
|
15 |
+
import sys
|
16 |
+
import numpy
|
17 |
+
import torch
|
18 |
+
import rembg
|
19 |
+
import threading
|
20 |
+
import urllib.request
|
21 |
+
from PIL import Image
|
22 |
+
from typing import Dict, Optional, Tuple, List
|
23 |
+
from dataclasses import dataclass
|
24 |
+
import streamlit as st
|
25 |
+
import huggingface_hub
|
26 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
27 |
+
from mvdiffusion.models.unet_mv2d_condition import UNetMV2DConditionModel
|
28 |
+
from mvdiffusion.data.single_image_dataset import SingleImageDataset as MVDiffusionDataset
|
29 |
+
from mvdiffusion.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline
|
30 |
+
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
31 |
+
from einops import rearrange
|
32 |
+
import numpy as np
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
def save_image(tensor):
|
39 |
+
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
|
40 |
+
# pdb.set_trace()
|
41 |
+
im = Image.fromarray(ndarr)
|
42 |
+
return ndarr
|
43 |
+
|
44 |
+
weight_dtype = torch.float16
|
45 |
+
|
46 |
+
_TITLE = '''Wonder3D: Single Image to 3D using Cross-Domain Diffusion'''
|
47 |
+
_DESCRIPTION = '''
|
48 |
+
<div>
|
49 |
+
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2310.15110"><img src="https://img.shields.io/badge/2310.15110-f9f7f7?logo="></a>
|
50 |
+
<a style="display:inline-block; margin-left: .5em" href='https://github.com/SUDO-AI-3D/zero123plus'><img src='https://img.shields.io/github/stars/SUDO-AI-3D/zero123plus?style=social' /></a>
|
51 |
+
</div>
|
52 |
+
'''
|
53 |
+
_GPU_ID = 0
|
54 |
+
|
55 |
+
|
56 |
+
if not hasattr(Image, 'Resampling'):
|
57 |
+
Image.Resampling = Image
|
58 |
+
|
59 |
+
|
60 |
+
def sam_init():
|
61 |
+
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth")
|
62 |
+
model_type = "vit_h"
|
63 |
+
|
64 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
|
65 |
+
predictor = SamPredictor(sam)
|
66 |
+
return predictor
|
67 |
+
|
68 |
+
def sam_segment(predictor, input_image, *bbox_coords):
|
69 |
+
bbox = np.array(bbox_coords)
|
70 |
+
image = np.asarray(input_image)
|
71 |
+
|
72 |
+
start_time = time.time()
|
73 |
+
predictor.set_image(image)
|
74 |
+
|
75 |
+
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
|
76 |
+
box=bbox,
|
77 |
+
multimask_output=True
|
78 |
+
)
|
79 |
+
|
80 |
+
print(f"SAM Time: {time.time() - start_time:.3f}s")
|
81 |
+
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
82 |
+
out_image[:, :, :3] = image
|
83 |
+
out_image_bbox = out_image.copy()
|
84 |
+
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
|
85 |
+
torch.cuda.empty_cache()
|
86 |
+
return Image.fromarray(out_image_bbox, mode='RGBA')
|
87 |
+
|
88 |
+
def expand2square(pil_img, background_color):
|
89 |
+
width, height = pil_img.size
|
90 |
+
if width == height:
|
91 |
+
return pil_img
|
92 |
+
elif width > height:
|
93 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
94 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
95 |
+
return result
|
96 |
+
else:
|
97 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
98 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
99 |
+
return result
|
100 |
+
|
101 |
+
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False):
|
102 |
+
RES = 1024
|
103 |
+
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
|
104 |
+
if chk_group is not None:
|
105 |
+
segment = "Background Removal" in chk_group
|
106 |
+
rescale = "Rescale" in chk_group
|
107 |
+
if segment:
|
108 |
+
image_rem = input_image.convert('RGBA')
|
109 |
+
image_nobg = remove(image_rem, alpha_matting=True)
|
110 |
+
arr = np.asarray(image_nobg)[:,:,-1]
|
111 |
+
x_nonzero = np.nonzero(arr.sum(axis=0))
|
112 |
+
y_nonzero = np.nonzero(arr.sum(axis=1))
|
113 |
+
x_min = int(x_nonzero[0].min())
|
114 |
+
y_min = int(y_nonzero[0].min())
|
115 |
+
x_max = int(x_nonzero[0].max())
|
116 |
+
y_max = int(y_nonzero[0].max())
|
117 |
+
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
|
118 |
+
# Rescale and recenter
|
119 |
+
if rescale:
|
120 |
+
image_arr = np.array(input_image)
|
121 |
+
in_w, in_h = image_arr.shape[:2]
|
122 |
+
out_res = min(RES, max(in_w, in_h))
|
123 |
+
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
|
124 |
+
x, y, w, h = cv2.boundingRect(mask)
|
125 |
+
max_size = max(w, h)
|
126 |
+
ratio = 0.75
|
127 |
+
side_len = int(max_size / ratio)
|
128 |
+
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
|
129 |
+
center = side_len//2
|
130 |
+
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
|
131 |
+
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)
|
132 |
+
|
133 |
+
rgba_arr = np.array(rgba) / 255.0
|
134 |
+
rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
|
135 |
+
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
|
136 |
+
else:
|
137 |
+
input_image = expand2square(input_image, (127, 127, 127, 0))
|
138 |
+
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
|
139 |
+
|
140 |
+
|
141 |
+
def load_wonder3d_pipeline(cfg):
|
142 |
+
# Load scheduler, tokenizer and models.
|
143 |
+
# noise_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
|
144 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision)
|
145 |
+
feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision)
|
146 |
+
vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision)
|
147 |
+
unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs)
|
148 |
+
unet.enable_xformers_memory_efficient_attention()
|
149 |
+
|
150 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
151 |
+
image_encoder.to(dtype=weight_dtype)
|
152 |
+
vae.to(dtype=weight_dtype)
|
153 |
+
unet.to(dtype=weight_dtype)
|
154 |
+
|
155 |
+
pipeline = MVDiffusionImagePipeline(
|
156 |
+
image_encoder=image_encoder, feature_extractor=feature_extractor, vae=vae, unet=unet, safety_checker=None,
|
157 |
+
scheduler=DDIMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler"),
|
158 |
+
**cfg.pipe_kwargs
|
159 |
+
)
|
160 |
+
|
161 |
+
if torch.cuda.is_available():
|
162 |
+
pipeline.to('cuda:0')
|
163 |
+
# sys.main_lock = threading.Lock()
|
164 |
+
return pipeline
|
165 |
+
|
166 |
+
from mvdiffusion.data.single_image_dataset import SingleImageDataset
|
167 |
+
def prepare_data(single_image, crop_size):
|
168 |
+
dataset = SingleImageDataset(
|
169 |
+
root_dir = None,
|
170 |
+
num_views = 6,
|
171 |
+
img_wh=[256, 256],
|
172 |
+
bg_color='white',
|
173 |
+
crop_size=crop_size,
|
174 |
+
single_image=single_image
|
175 |
+
)
|
176 |
+
return dataset[0]
|
177 |
+
|
178 |
+
|
179 |
+
def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size):
|
180 |
+
import pdb
|
181 |
+
# pdb.set_trace()
|
182 |
+
|
183 |
+
batch = prepare_data(single_image, crop_size)
|
184 |
+
|
185 |
+
pipeline.set_progress_bar_config(disable=True)
|
186 |
+
seed = int(seed)
|
187 |
+
generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed)
|
188 |
+
|
189 |
+
# repeat (2B, Nv, 3, H, W)
|
190 |
+
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0).to(weight_dtype)
|
191 |
+
|
192 |
+
# (2B, Nv, Nce)
|
193 |
+
camera_embeddings = torch.cat([batch['camera_embeddings']]*2, dim=0).to(weight_dtype)
|
194 |
+
|
195 |
+
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(weight_dtype)
|
196 |
+
|
197 |
+
camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(weight_dtype)
|
198 |
+
|
199 |
+
# (B*Nv, 3, H, W)
|
200 |
+
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
|
201 |
+
# (B*Nv, Nce)
|
202 |
+
# camera_embeddings = rearrange(camera_embeddings, "B Nv Nce -> (B Nv) Nce")
|
203 |
+
|
204 |
+
out = pipeline(
|
205 |
+
imgs_in, camera_embeddings, generator=generator, guidance_scale=guidance_scale,
|
206 |
+
num_inference_steps=steps,
|
207 |
+
output_type='pt', num_images_per_prompt=1, **cfg.pipe_validation_kwargs
|
208 |
+
).images
|
209 |
+
|
210 |
+
bsz = out.shape[0] // 2
|
211 |
+
normals_pred = out[:bsz]
|
212 |
+
images_pred = out[bsz:]
|
213 |
+
|
214 |
+
normals_pred = [save_image(normals_pred[i]) for i in range(bsz)]
|
215 |
+
images_pred = [save_image(images_pred[i]) for i in range(bsz)]
|
216 |
+
|
217 |
+
out = images_pred + normals_pred
|
218 |
+
return out
|
219 |
+
|
220 |
+
|
221 |
+
@dataclass
|
222 |
+
class TestConfig:
|
223 |
+
pretrained_model_name_or_path: str
|
224 |
+
pretrained_unet_path:str
|
225 |
+
revision: Optional[str]
|
226 |
+
validation_dataset: Dict
|
227 |
+
save_dir: str
|
228 |
+
seed: Optional[int]
|
229 |
+
validation_batch_size: int
|
230 |
+
dataloader_num_workers: int
|
231 |
+
|
232 |
+
local_rank: int
|
233 |
+
|
234 |
+
pipe_kwargs: Dict
|
235 |
+
pipe_validation_kwargs: Dict
|
236 |
+
unet_from_pretrained_kwargs: Dict
|
237 |
+
validation_guidance_scales: List[float]
|
238 |
+
validation_grid_nrow: int
|
239 |
+
camera_embedding_lr_mult: float
|
240 |
+
|
241 |
+
num_views: int
|
242 |
+
camera_embedding_type: str
|
243 |
+
|
244 |
+
pred_type: str # joint, or ablation
|
245 |
+
|
246 |
+
enable_xformers_memory_efficient_attention: bool
|
247 |
+
|
248 |
+
cond_on_normals: bool
|
249 |
+
cond_on_colors: bool
|
250 |
+
|
251 |
+
|
252 |
+
def run_demo():
|
253 |
+
from utils.misc import load_config
|
254 |
+
from omegaconf import OmegaConf
|
255 |
+
# parse YAML config to OmegaConf
|
256 |
+
cfg = load_config("./configs/mvdiffusion-joint-ortho-6views.yaml")
|
257 |
+
# print(cfg)
|
258 |
+
schema = OmegaConf.structured(TestConfig)
|
259 |
+
cfg = OmegaConf.merge(schema, cfg)
|
260 |
+
|
261 |
+
pipeline = load_wonder3d_pipeline(cfg)
|
262 |
+
torch.set_grad_enabled(False)
|
263 |
+
pipeline.to(f'cuda:{_GPU_ID}')
|
264 |
+
|
265 |
+
predictor = sam_init()
|
266 |
+
|
267 |
+
custom_theme = gr.themes.Soft(primary_hue="blue").set(
|
268 |
+
button_secondary_background_fill="*neutral_100",
|
269 |
+
button_secondary_background_fill_hover="*neutral_200")
|
270 |
+
custom_css = '''#disp_image {
|
271 |
+
text-align: center; /* Horizontally center the content */
|
272 |
+
}'''
|
273 |
+
|
274 |
+
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
|
275 |
+
with gr.Row():
|
276 |
+
with gr.Column(scale=1):
|
277 |
+
gr.Markdown('# ' + _TITLE)
|
278 |
+
gr.Markdown(_DESCRIPTION)
|
279 |
+
with gr.Row(variant='panel'):
|
280 |
+
with gr.Column(scale=1):
|
281 |
+
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', tool=None)
|
282 |
+
|
283 |
+
example_folder = os.path.join(os.path.dirname(__file__), "./example_images")
|
284 |
+
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
|
285 |
+
gr.Examples(
|
286 |
+
examples=example_fns,
|
287 |
+
inputs=[input_image],
|
288 |
+
outputs=[input_image],
|
289 |
+
cache_examples=False,
|
290 |
+
label='Examples (click one of the images below to start)',
|
291 |
+
examples_per_page=30
|
292 |
+
)
|
293 |
+
with gr.Column(scale=1):
|
294 |
+
processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, tool=None, image_mode='RGBA', elem_id="disp_image")
|
295 |
+
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False, tool=None)
|
296 |
+
|
297 |
+
with gr.Accordion('Advanced options', open=True):
|
298 |
+
with gr.Row():
|
299 |
+
with gr.Column():
|
300 |
+
input_processing = gr.CheckboxGroup(['Background Removal'], label='Input Image Preprocessing', value=['Background Removal'])
|
301 |
+
with gr.Column():
|
302 |
+
output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[])
|
303 |
+
with gr.Row():
|
304 |
+
with gr.Column():
|
305 |
+
scale_slider = gr.Slider(1, 10, value=3, step=1,
|
306 |
+
label='Classifier Free Guidance Scale')
|
307 |
+
with gr.Column():
|
308 |
+
steps_slider = gr.Slider(15, 100, value=50, step=1,
|
309 |
+
label='Number of Diffusion Inference Steps')
|
310 |
+
with gr.Row():
|
311 |
+
with gr.Column():
|
312 |
+
seed = gr.Number(42, label='Seed')
|
313 |
+
with gr.Column():
|
314 |
+
crop_size = gr.Number(192, label='Crop size')
|
315 |
+
# crop_size = 192
|
316 |
+
run_btn = gr.Button('Generate', variant='primary', interactive=True)
|
317 |
+
with gr.Row():
|
318 |
+
view_1 = gr.Image(interactive=False, height=240, show_label=False)
|
319 |
+
view_2 = gr.Image(interactive=False, height=240, show_label=False)
|
320 |
+
view_3 = gr.Image(interactive=False, height=240, show_label=False)
|
321 |
+
view_4 = gr.Image(interactive=False, height=240, show_label=False)
|
322 |
+
view_5 = gr.Image(interactive=False, height=240, show_label=False)
|
323 |
+
view_6 = gr.Image(interactive=False, height=240, show_label=False)
|
324 |
+
with gr.Row():
|
325 |
+
normal_1 = gr.Image(interactive=False, height=240, show_label=False)
|
326 |
+
normal_2 = gr.Image(interactive=False, height=240, show_label=False)
|
327 |
+
normal_3 = gr.Image(interactive=False, height=240, show_label=False)
|
328 |
+
normal_4 = gr.Image(interactive=False, height=240, show_label=False)
|
329 |
+
normal_5 = gr.Image(interactive=False, height=240, show_label=False)
|
330 |
+
normal_6 = gr.Image(interactive=False, height=240, show_label=False)
|
331 |
+
|
332 |
+
|
333 |
+
first_stage = run_btn.click(fn=partial(preprocess, predictor),
|
334 |
+
inputs=[input_image, input_processing],
|
335 |
+
outputs=[processed_image_highres, processed_image], queue=True
|
336 |
+
)
|
337 |
+
|
338 |
+
|
339 |
+
first_stage.success(fn=partial(run_pipeline, pipeline, cfg),
|
340 |
+
inputs=[processed_image_highres, scale_slider, steps_slider, seed, crop_size],
|
341 |
+
outputs=[view_1, view_2, view_3, view_4, view_5, view_6, normal_1, normal_2, normal_3, normal_4, normal_5, normal_6]
|
342 |
+
)
|
343 |
+
|
344 |
+
demo.queue().launch(share=True, max_threads=80)
|
345 |
+
|
346 |
+
|
347 |
+
if __name__ == '__main__':
|
348 |
+
fire.Fire(run_demo)
|