File size: 9,704 Bytes
19677a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Different model implementation plus a general port for all the models."""
from typing import Any, Callable
from flax import linen as nn
from jax import random
import jax.numpy as jnp

from jaxnerf.nerf import model_utils
from jaxnerf.nerf import utils


def get_model(key, example_batch, args):
    """A helper function that wraps around a 'model zoo'."""
    model_dict = {"nerf": construct_nerf}
    return model_dict[args.model](key, example_batch, args)


class NerfModel(nn.Module):
    """Nerf NN Model with both coarse and fine MLPs."""
    num_coarse_samples: int  # The number of samples for the coarse nerf.
    num_fine_samples: int  # The number of samples for the fine nerf.
    use_viewdirs: bool  # If True, use viewdirs as an input.
    near: float  # The distance to the near plane
    far: float  # The distance to the far plane
    noise_std: float  # The std dev of noise added to raw sigma.
    net_depth: int  # The depth of the first part of MLP.
    net_width: int  # The width of the first part of MLP.
    net_depth_condition: int  # The depth of the second part of MLP.
    net_width_condition: int  # The width of the second part of MLP.
    net_activation: Callable[..., Any]  # MLP activation
    skip_layer: int  # How often to add skip connections.
    num_rgb_channels: int  # The number of RGB channels.
    num_sigma_channels: int  # The number of density channels.
    white_bkgd: bool  # If True, use a white background.
    min_deg_point: int  # The minimum degree of positional encoding for positions.
    max_deg_point: int  # The maximum degree of positional encoding for positions.
    deg_view: int  # The degree of positional encoding for viewdirs.
    lindisp: bool  # If True, sample linearly in disparity rather than in depth.
    rgb_activation: Callable[..., Any]  # Output RGB activation.
    sigma_activation: Callable[..., Any]  # Output sigma activation.
    legacy_posenc_order: bool  # Keep the same ordering as the original tf code.

    @nn.compact
    def __call__(self, rng_0, rng_1, rays, randomized):
        """Nerf Model.

        Args:
          rng_0: jnp.ndarray, random number generator for coarse model sampling.
          rng_1: jnp.ndarray, random number generator for fine model sampling.
          rays: util.Rays, a namedtuple of ray origins, directions, and viewdirs.
          randomized: bool, use randomized stratified sampling.

        Returns:
          ret: list, [(rgb_coarse, disp_coarse, acc_coarse), (rgb, disp, acc)]
        """
        # Stratified sampling along rays
        key, rng_0 = random.split(rng_0)
        z_vals, samples = model_utils.sample_along_rays(
            key,
            rays.origins,
            rays.directions,
            self.num_coarse_samples,
            self.near,
            self.far,
            randomized,
            self.lindisp,
        )
        samples_enc = model_utils.posenc(
            samples,
            self.min_deg_point,
            self.max_deg_point,
            self.legacy_posenc_order,
        )

        # Construct the "coarse" MLP.
        coarse_mlp = model_utils.MLP(
            net_depth=self.net_depth,
            net_width=self.net_width,
            net_depth_condition=self.net_depth_condition,
            net_width_condition=self.net_width_condition,
            net_activation=self.net_activation,
            skip_layer=self.skip_layer,
            num_rgb_channels=self.num_rgb_channels,
            num_sigma_channels=self.num_sigma_channels)

        # Point attribute predictions
        if self.use_viewdirs:
            viewdirs_enc = model_utils.posenc(
                rays.viewdirs,
                0,
                self.deg_view,
                self.legacy_posenc_order,
            )
            raw_rgb, raw_sigma = coarse_mlp(samples_enc, viewdirs_enc)
        else:
            viewdirs_enc = None
            raw_rgb, raw_sigma = coarse_mlp(samples_enc)
        # Add noises to regularize the density predictions if needed
        key, rng_0 = random.split(rng_0)
        raw_sigma = model_utils.add_gaussian_noise(
            key,
            raw_sigma,
            self.noise_std,
            randomized,
        )
        rgb = self.rgb_activation(raw_rgb)
        sigma = self.sigma_activation(raw_sigma)
        # Volumetric rendering.
        comp_rgb, disp, acc, weights = model_utils.volumetric_rendering(
            rgb,
            sigma,
            z_vals,
            rays.directions,
            white_bkgd=self.white_bkgd,
        )
        ret = [
            (comp_rgb, disp, acc),
        ]
        # Hierarchical sampling based on coarse predictions
        if self.num_fine_samples > 0:
            z_vals_mid = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
            key, rng_1 = random.split(rng_1)
            z_vals, samples = model_utils.sample_pdf(
                key,
                z_vals_mid,
                weights[..., 1:-1],
                rays.origins,
                rays.directions,
                z_vals,
                self.num_fine_samples,
                randomized,
            )
            samples_enc = model_utils.posenc(
                samples,
                self.min_deg_point,
                self.max_deg_point,
                self.legacy_posenc_order,
            )

            # Construct the "fine" MLP.
            fine_mlp = model_utils.MLP(
                net_depth=self.net_depth,
                net_width=self.net_width,
                net_depth_condition=self.net_depth_condition,
                net_width_condition=self.net_width_condition,
                net_activation=self.net_activation,
                skip_layer=self.skip_layer,
                num_rgb_channels=self.num_rgb_channels,
                num_sigma_channels=self.num_sigma_channels)

            if self.use_viewdirs:
                raw_rgb, raw_sigma = fine_mlp(samples_enc, viewdirs_enc)
            else:
                raw_rgb, raw_sigma = fine_mlp(samples_enc)
            key, rng_1 = random.split(rng_1)
            raw_sigma = model_utils.add_gaussian_noise(
                key,
                raw_sigma,
                self.noise_std,
                randomized,
            )
            rgb = self.rgb_activation(raw_rgb)
            sigma = self.sigma_activation(raw_sigma)
            comp_rgb, disp, acc, unused_weights = model_utils.volumetric_rendering(
                rgb,
                sigma,
                z_vals,
                rays.directions,
                white_bkgd=self.white_bkgd,
            )
            ret.append((comp_rgb, disp, acc))
        return ret


def construct_nerf(key, example_batch, args):
    """Construct a Neural Radiance Field.

  Args:
    key: jnp.ndarray. Random number generator.
    example_batch: dict, an example of a batch of data.
    args: FLAGS class. Hyperparameters of nerf.

  Returns:
    model: nn.Model. Nerf model with parameters.
    state: flax.Module.state. Nerf model state for stateful parameters.
  """
    net_activation = getattr(nn, str(args.net_activation))
    rgb_activation = getattr(nn, str(args.rgb_activation))
    sigma_activation = getattr(nn, str(args.sigma_activation))

    # Assert that rgb_activation always produces outputs in [0, 1], and
    # sigma_activation always produce non-negative outputs.
    x = jnp.exp(jnp.linspace(-90, 90, 1024))
    x = jnp.concatenate([-x[::-1], x], 0)

    rgb = rgb_activation(x)
    if jnp.any(rgb < 0) or jnp.any(rgb > 1):
        raise NotImplementedError(
            "Choice of rgb_activation `{}` produces colors outside of [0, 1]"
                .format(args.rgb_activation))

    sigma = sigma_activation(x)
    if jnp.any(sigma < 0):
        raise NotImplementedError(
            "Choice of sigma_activation `{}` produces negative densities".format(
                args.sigma_activation))

    model = NerfModel(
        min_deg_point=args.min_deg_point,
        max_deg_point=args.max_deg_point,
        deg_view=args.deg_view,
        num_coarse_samples=args.num_coarse_samples,
        num_fine_samples=args.num_fine_samples,
        use_viewdirs=args.use_viewdirs,
        near=args.near,
        far=args.far,
        noise_std=args.noise_std,
        white_bkgd=args.white_bkgd,
        net_depth=args.net_depth,
        net_width=args.net_width,
        net_depth_condition=args.net_depth_condition,
        net_width_condition=args.net_width_condition,
        skip_layer=args.skip_layer,
        num_rgb_channels=args.num_rgb_channels,
        num_sigma_channels=args.num_sigma_channels,
        lindisp=args.lindisp,
        net_activation=net_activation,
        rgb_activation=rgb_activation,
        sigma_activation=sigma_activation,
        legacy_posenc_order=args.legacy_posenc_order)
    rays = example_batch["rays"]
    key1, key2, key3 = random.split(key, num=3)

    init_variables = model.init(
        key1,
        rng_0=key2,
        rng_1=key3,
        rays=utils.namedtuple_map(lambda x: x[0], rays),
        randomized=args.randomized)

    return model, init_variables