File size: 5,833 Bytes
19677a1
0d35ba8
19677a1
e4b8bbd
baad652
19677a1
0d35ba8
0071656
19677a1
 
0071656
13bc063
0d35ba8
e4b8bbd
 
 
a0a54d5
 
2eb43b1
0071656
2eb43b1
 
a0a54d5
 
b9ba680
 
 
 
 
bd597e9
bcc3336
8817db0
19677a1
fd209d1
8817db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd209d1
ec848cd
b19a277
 
ec848cd
fd209d1
 
bcc3336
 
 
 
 
b6c08b0
4b03ae2
2eb43b1
 
fd209d1
 
7a6388a
b9ba680
0d35ba8
b9ba680
a0a54d5
b9ba680
 
 
 
8817db0
 
 
 
 
19677a1
 
 
b9ba680
a0a54d5
19677a1
 
 
8817db0
 
 
 
b9ba680
 
 
 
 
 
8817db0
 
 
b9ba680
 
8817db0
0071656
13bc063
 
6f2613a
2eb43b1
 
 
4b03ae2
 
 
 
b9ba680
 
 
 
 
 
8817db0
 
 
 
 
b9ba680
b6c08b0
 
 
 
8817db0
 
519c3dc
8817db0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import builtins
import math
import json

import streamlit as st
import gdown

from demo.src.models import load_trained_model
from demo.src.utils import render_predict_from_pose, predict_to_image

st.set_page_config(page_title="DietNeRF")

with open("config.json") as f:
    cfg = json.loads(f.read())

MODEL_DIR = "models"

SCENES_LIST = ["Mic", "Chair", "Lego", "Drums", "Ship", "Hotdog"]


def select_model(obj_select):
    DIET_NERF_MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"]
    DIET_NERF_FILE_ID = cfg[obj_select]["DIET_NERF_FILE_ID"]

    NERF_MODEL_NAME = cfg[obj_select]["NERF_MODEL_NAME"]
    NERF_FILE_ID = cfg[obj_select]["NERF_FILE_ID"]

    return DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID


pi = math.pi

st.title("DietNeRF")
st.sidebar.markdown(
    """
<style>
.aligncenter {
    text-align: center;
}
</style>
<p class="aligncenter">
    <img src="https://user-images.githubusercontent.com/77657524/126361638-4aad58e8-4efb-4fc5-bf78-f53d03799e1e.png" width="420" height="400"/>
</p>
""",
    unsafe_allow_html=True,
)
st.sidebar.markdown(
    """
<p style='text-align: center'>
<a href="https://github.com/codestella/putting-nerf-on-a-diet" target="_blank">GitHub</a> | <a href="https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745" target="_blank">Project Report</a>
</p>
    """,
    unsafe_allow_html=True,
)
st.sidebar.header("SELECT YOUR VIEW DIRECTION")
theta = st.sidebar.slider(
    "Theta", min_value=-pi, max_value=pi, step=0.5, value=0.0, help="Rotational angle in Horizontal direction"
)
phi = st.sidebar.slider(
    "Phi", min_value=0.0, max_value=0.5 * pi, step=0.1, value=1.0, help="Rotational angle in Vertical direction"
)
radius = st.sidebar.slider(
    "Radius", min_value=2.0, max_value=6.0, step=1.0, value=3.0, help="Distance between object and the viewer"
)
caption = (
    "`DietNeRF` achieves state-of-the-art few-shot learning capacity in 3D model reconstruction. "
    "Thanks to the 2D supervision by `CLIP (aka. Semantic Consisteny Loss)`, "
    "it can render novel and challenging views with `ONLY 8 training images`, "
    "**outperforming** original [NeRF](https://www.matthewtancik.com/nerf)!"
)
st.markdown(caption)
st.markdown(
    "> 📒 NOTE: Look at the "
    "[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) "
    "section in our report to get a detailed comparison of differences between `DietNeRF` and `NeRF`."
)


obj_select = st.selectbox("Select a Scene", SCENES_LIST, index=0)
DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID = select_model(obj_select)


@st.cache(show_spinner=False)
def download_diet_nerf_model():
    os.makedirs(MODEL_DIR, exist_ok=True)
    diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
    url = f"https://drive.google.com/uc?id={DIET_NERF_FILE_ID}"
    gdown.download(url, diet_nerf_model_path, quiet=False)
    print(f"Model downloaded from google drive: {diet_nerf_model_path}")


# def download_nerf_model():
#     nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME)
#     url = f"https://drive.google.com/uc?id={NERF_FILE_ID}"
#     gdown.download(url, nerf_model_path, quiet=False)
#     print(f"Model downloaded from google drive: {nerf_model_path}")


@st.cache(show_spinner=False, allow_output_mutation=True)
def fetch_diet_nerf_model():
    model, state = load_trained_model(MODEL_DIR, DIET_NERF_MODEL_NAME)
    return model, state


# @st.cache(show_spinner=False, allow_output_mutation=True)
# def fetch_nerf_model():
#     model, state = load_trained_model(MODEL_DIR, NERF_MODEL_NAME)
#     return model, state


diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
if not os.path.isfile(diet_nerf_model_path):
    download_diet_nerf_model()

# nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME)
# if not os.path.isfile(nerf_model_path):
#     download_nerf_model()

diet_nerf_model, diet_nerf_state = fetch_diet_nerf_model()
# nerf_model, nerf_state = fetch_nerf_model()

st.markdown("")

with st.spinner("Rendering view..."):
    with st.spinner(
        "It may take around 1-2 mins. In the meantime, why don't you take a look at our report if you haven't already :)"
    ):
        st.markdown(
            "> :bomb: WARNING: The rendered view does not fully reflect the true quality of the view generated by the model "
            "because it has been downsampled to speedup the process."
        )
        dn_pred_color, _ = render_predict_from_pose(diet_nerf_state, theta, phi, radius)
        dn_im = predict_to_image(dn_pred_color)
        dn_w, _ = dn_im.size
        dn_new_w = int(2 * dn_w)
        dn_im = dn_im.resize(size=(dn_new_w, dn_new_w))

        # n_pred_color, _ = render_predict_from_pose(nerf_state, theta, phi, radius)
        # n_im = predict_to_image(n_pred_color)
        # n_w, _ = n_im.size
        # n_new_w = int(2 * n_w)
        # n_im = n_im.resize(size=(n_new_w, n_new_w))

        # diet_nerf_col, nerf_col = st.beta_columns([1, 1])
        st.markdown(f"""<h4 style='text-align: center'>Rendered view for {obj_select}</h4>""", unsafe_allow_html=True)
        st.image(dn_im, use_column_width=True)

        # nerf_col.markdown("""<h4 style='text-align: center'>NeRF</h4>""", unsafe_allow_html=True)
        # nerf_col.image(n_im, use_column_width=True)

        # st.markdown(
        #     "> 📒 NOTE: The views may look similar to you but see the "
        #     "[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) "
        #     "section in our report to get a detailed comparison of differences between `DietNeRF` and `NeRF`."
        # )