Spaces:
Build error
Build error
File size: 5,833 Bytes
19677a1 0d35ba8 19677a1 e4b8bbd baad652 19677a1 0d35ba8 0071656 19677a1 0071656 13bc063 0d35ba8 e4b8bbd a0a54d5 2eb43b1 0071656 2eb43b1 a0a54d5 b9ba680 bd597e9 bcc3336 8817db0 19677a1 fd209d1 8817db0 fd209d1 ec848cd b19a277 ec848cd fd209d1 bcc3336 b6c08b0 4b03ae2 2eb43b1 fd209d1 7a6388a b9ba680 0d35ba8 b9ba680 a0a54d5 b9ba680 8817db0 19677a1 b9ba680 a0a54d5 19677a1 8817db0 b9ba680 8817db0 b9ba680 8817db0 0071656 13bc063 6f2613a 2eb43b1 4b03ae2 b9ba680 8817db0 b9ba680 b6c08b0 8817db0 519c3dc 8817db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
import builtins
import math
import json
import streamlit as st
import gdown
from demo.src.models import load_trained_model
from demo.src.utils import render_predict_from_pose, predict_to_image
st.set_page_config(page_title="DietNeRF")
with open("config.json") as f:
cfg = json.loads(f.read())
MODEL_DIR = "models"
SCENES_LIST = ["Mic", "Chair", "Lego", "Drums", "Ship", "Hotdog"]
def select_model(obj_select):
DIET_NERF_MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"]
DIET_NERF_FILE_ID = cfg[obj_select]["DIET_NERF_FILE_ID"]
NERF_MODEL_NAME = cfg[obj_select]["NERF_MODEL_NAME"]
NERF_FILE_ID = cfg[obj_select]["NERF_FILE_ID"]
return DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID
pi = math.pi
st.title("DietNeRF")
st.sidebar.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p class="aligncenter">
<img src="https://user-images.githubusercontent.com/77657524/126361638-4aad58e8-4efb-4fc5-bf78-f53d03799e1e.png" width="420" height="400"/>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
<p style='text-align: center'>
<a href="https://github.com/codestella/putting-nerf-on-a-diet" target="_blank">GitHub</a> | <a href="https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745" target="_blank">Project Report</a>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.header("SELECT YOUR VIEW DIRECTION")
theta = st.sidebar.slider(
"Theta", min_value=-pi, max_value=pi, step=0.5, value=0.0, help="Rotational angle in Horizontal direction"
)
phi = st.sidebar.slider(
"Phi", min_value=0.0, max_value=0.5 * pi, step=0.1, value=1.0, help="Rotational angle in Vertical direction"
)
radius = st.sidebar.slider(
"Radius", min_value=2.0, max_value=6.0, step=1.0, value=3.0, help="Distance between object and the viewer"
)
caption = (
"`DietNeRF` achieves state-of-the-art few-shot learning capacity in 3D model reconstruction. "
"Thanks to the 2D supervision by `CLIP (aka. Semantic Consisteny Loss)`, "
"it can render novel and challenging views with `ONLY 8 training images`, "
"**outperforming** original [NeRF](https://www.matthewtancik.com/nerf)!"
)
st.markdown(caption)
st.markdown(
"> 📒 NOTE: Look at the "
"[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) "
"section in our report to get a detailed comparison of differences between `DietNeRF` and `NeRF`."
)
obj_select = st.selectbox("Select a Scene", SCENES_LIST, index=0)
DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID = select_model(obj_select)
@st.cache(show_spinner=False)
def download_diet_nerf_model():
os.makedirs(MODEL_DIR, exist_ok=True)
diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
url = f"https://drive.google.com/uc?id={DIET_NERF_FILE_ID}"
gdown.download(url, diet_nerf_model_path, quiet=False)
print(f"Model downloaded from google drive: {diet_nerf_model_path}")
# def download_nerf_model():
# nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME)
# url = f"https://drive.google.com/uc?id={NERF_FILE_ID}"
# gdown.download(url, nerf_model_path, quiet=False)
# print(f"Model downloaded from google drive: {nerf_model_path}")
@st.cache(show_spinner=False, allow_output_mutation=True)
def fetch_diet_nerf_model():
model, state = load_trained_model(MODEL_DIR, DIET_NERF_MODEL_NAME)
return model, state
# @st.cache(show_spinner=False, allow_output_mutation=True)
# def fetch_nerf_model():
# model, state = load_trained_model(MODEL_DIR, NERF_MODEL_NAME)
# return model, state
diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
if not os.path.isfile(diet_nerf_model_path):
download_diet_nerf_model()
# nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME)
# if not os.path.isfile(nerf_model_path):
# download_nerf_model()
diet_nerf_model, diet_nerf_state = fetch_diet_nerf_model()
# nerf_model, nerf_state = fetch_nerf_model()
st.markdown("")
with st.spinner("Rendering view..."):
with st.spinner(
"It may take around 1-2 mins. In the meantime, why don't you take a look at our report if you haven't already :)"
):
st.markdown(
"> :bomb: WARNING: The rendered view does not fully reflect the true quality of the view generated by the model "
"because it has been downsampled to speedup the process."
)
dn_pred_color, _ = render_predict_from_pose(diet_nerf_state, theta, phi, radius)
dn_im = predict_to_image(dn_pred_color)
dn_w, _ = dn_im.size
dn_new_w = int(2 * dn_w)
dn_im = dn_im.resize(size=(dn_new_w, dn_new_w))
# n_pred_color, _ = render_predict_from_pose(nerf_state, theta, phi, radius)
# n_im = predict_to_image(n_pred_color)
# n_w, _ = n_im.size
# n_new_w = int(2 * n_w)
# n_im = n_im.resize(size=(n_new_w, n_new_w))
# diet_nerf_col, nerf_col = st.beta_columns([1, 1])
st.markdown(f"""<h4 style='text-align: center'>Rendered view for {obj_select}</h4>""", unsafe_allow_html=True)
st.image(dn_im, use_column_width=True)
# nerf_col.markdown("""<h4 style='text-align: center'>NeRF</h4>""", unsafe_allow_html=True)
# nerf_col.image(n_im, use_column_width=True)
# st.markdown(
# "> 📒 NOTE: The views may look similar to you but see the "
# "[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) "
# "section in our report to get a detailed comparison of differences between `DietNeRF` and `NeRF`."
# )
|