DietNerf-Demo / app.py
hassiahk's picture
Remove NeRF models
8817db0
raw
history blame
5.32 kB
import os
import builtins
import math
import json
import streamlit as st
import gdown
from demo.src.models import load_trained_model
from demo.src.utils import render_predict_from_pose, predict_to_image
st.set_page_config(page_title="DietNeRF")
with open("config.json") as f:
cfg = json.loads(f.read())
MODEL_DIR = "models"
SCENES_LIST = ["Mic", "Chair", "Lego", "Drums", "Ship", "Hotdog"]
def select_model(obj_select):
DIET_NERF_MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"]
DIET_NERF_FILE_ID = cfg[obj_select]["DIET_NERF_FILE_ID"]
NERF_MODEL_NAME = cfg[obj_select]["NERF_MODEL_NAME"]
NERF_FILE_ID = cfg[obj_select]["NERF_FILE_ID"]
return DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID
pi = math.pi
st.title("DietNeRF")
st.sidebar.markdown(
"""
<style>
.aligncenter {
text-align: center;
}
</style>
<p class="aligncenter">
<img src="https://user-images.githubusercontent.com/77657524/126361638-4aad58e8-4efb-4fc5-bf78-f53d03799e1e.png" width="420" height="400"/>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(
"""
<p style='text-align: center'>
<a href="https://github.com/codestella/putting-nerf-on-a-diet" target="_blank">GitHub</a> | <a href="https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745" target="_blank">Project Report</a>
</p>
""",
unsafe_allow_html=True,
)
st.sidebar.header("SELECT YOUR VIEW DIRECTION")
theta = st.sidebar.slider(
"Theta", min_value=-pi, max_value=pi, step=0.5, value=0.0, help="Rotational angle in Horizontal direction"
)
phi = st.sidebar.slider(
"Phi", min_value=0.0, max_value=0.5 * pi, step=0.1, value=1.0, help="Rotational angle in Vertical direction"
)
radius = st.sidebar.slider(
"Radius", min_value=2.0, max_value=6.0, step=1.0, value=3.0, help="Distance between object and the viewer"
)
caption = (
"`DietNeRF` achieves state-of-the-art few-shot learning capacity in 3D model reconstruction. "
"Thanks to the 2D supervision by `CLIP (aka. Semantic Consisteny Loss)`, "
"it can render novel and challenging views with `ONLY 8 training images`, "
"**outperforming** original [NeRF](https://www.matthewtancik.com/nerf)!"
)
st.markdown(caption)
st.markdown("")
obj_select = st.selectbox("Select a Scene", SCENES_LIST, index=0)
DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID = select_model(obj_select)
@st.cache(show_spinner=False)
def download_diet_nerf_model():
os.makedirs(MODEL_DIR, exist_ok=True)
diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
url = f"https://drive.google.com/uc?id={DIET_NERF_FILE_ID}"
gdown.download(url, diet_nerf_model_path, quiet=False)
print(f"Model downloaded from google drive: {diet_nerf_model_path}")
# def download_nerf_model():
# nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME)
# url = f"https://drive.google.com/uc?id={NERF_FILE_ID}"
# gdown.download(url, nerf_model_path, quiet=False)
# print(f"Model downloaded from google drive: {nerf_model_path}")
@st.cache(show_spinner=False, allow_output_mutation=True)
def fetch_diet_nerf_model():
model, state = load_trained_model(MODEL_DIR, DIET_NERF_MODEL_NAME)
return model, state
# @st.cache(show_spinner=False, allow_output_mutation=True)
# def fetch_nerf_model():
# model, state = load_trained_model(MODEL_DIR, NERF_MODEL_NAME)
# return model, state
diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME)
if not os.path.isfile(diet_nerf_model_path):
download_diet_nerf_model()
# nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME)
# if not os.path.isfile(nerf_model_path):
# download_nerf_model()
diet_nerf_model, diet_nerf_state = fetch_diet_nerf_model()
# nerf_model, nerf_state = fetch_nerf_model()
st.markdown("")
with st.spinner("Rendering View..."):
with st.spinner(
"It may take around 1-2 mins. In the meantime, why don't you take a look at our report if you haven't already :)"
):
dn_pred_color, _ = render_predict_from_pose(diet_nerf_state, theta, phi, radius)
dn_im = predict_to_image(dn_pred_color)
dn_w, _ = dn_im.size
dn_new_w = int(2 * dn_w)
dn_im = dn_im.resize(size=(dn_new_w, dn_new_w))
# n_pred_color, _ = render_predict_from_pose(nerf_state, theta, phi, radius)
# n_im = predict_to_image(n_pred_color)
# n_w, _ = n_im.size
# n_new_w = int(2 * n_w)
# n_im = n_im.resize(size=(n_new_w, n_new_w))
diet_nerf_col, nerf_col = st.beta_columns([1, 1])
diet_nerf_col.markdown("""<h4 style='text-align: center'>DietNeRF</h4>""", unsafe_allow_html=True)
diet_nerf_col.image(dn_im, use_column_width=True)
# nerf_col.markdown("""<h4 style='text-align: center'>NeRF</h4>""", unsafe_allow_html=True)
# nerf_col.image(n_im, use_column_width=True)
# st.markdown(
# "> πŸ“’ NOTE: The views may look similar to you but see the "
# "[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) "
# "section in our report to get a detailed comparison of differences between `DietNeRF` and `NeRF`."
# )