Spaces:
Build error
Build error
import os | |
import builtins | |
import math | |
import json | |
import streamlit as st | |
import gdown | |
# from google_drive_downloader import GoogleDriveDownloader as gdd | |
from demo.src.models import load_trained_model | |
from demo.src.utils import render_predict_from_pose, predict_to_image | |
# from demo.src.config import MODEL_DIR, MODEL_NAME, FILE_ID | |
st.set_page_config(page_title="DietNeRF") | |
with open("config.json") as f: | |
cfg = json.loads(f.read()) | |
def select_model(): | |
obj_select = st.selectbox("Select a Scene", ("Mic", "Chair", "Lego", "Ship", "Hotdog")) | |
MODEL_DIR = "models" | |
MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"] | |
FILE_ID = cfg[obj_select]["FILE_ID"] | |
return MODEL_DIR, MODEL_NAME, FILE_ID | |
st.title("DietNeRF") | |
caption = ( | |
"DietNeRF achieves SoTA few-shot learning capacity in 3D model reconstruction. " | |
"Thanks to the 2D supervision by CLIP (aka semantic loss), " | |
"it can render novel and challenging views with ONLY 8 training images, " | |
"outperforming original NeRF!" | |
) | |
st.markdown(caption) | |
st.markdown("") | |
MODEL_DIR, MODEL_NAME, FILE_ID = select_model() | |
def download_model(): | |
os.makedirs(MODEL_DIR, exist_ok=True) | |
_model_path = os.path.join(MODEL_DIR, MODEL_NAME) | |
url = f"https://drive.google.com/uc?id={FILE_ID}" | |
gdown.download(url, _model_path, quiet=False) | |
print(f"Model downloaded from google drive: {_model_path}") | |
def fetch_model(): | |
model, state = load_trained_model(MODEL_DIR, MODEL_NAME) | |
return model, state | |
model_path = os.path.join(MODEL_DIR, MODEL_NAME) | |
if not os.path.isfile(model_path): | |
download_model() | |
model, state = fetch_model() | |
pi = math.pi | |
st.sidebar.markdown( | |
""" | |
<style> | |
.aligncenter { | |
text-align: center; | |
} | |
</style> | |
<p class="aligncenter"> | |
<img src="https://user-images.githubusercontent.com/77657524/126361638-4aad58e8-4efb-4fc5-bf78-f53d03799e1e.png" width="430" height="400"/> | |
</p> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.markdown( | |
""" | |
<p style='text-align: center'> | |
<a href="https://github.com/codestella/putting-nerf-on-a-diet" target="_blank">GitHub</a> | <a href="https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745" target="_blank">Project Report</a> | |
</p> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.header("SELECT YOUR VIEW DIRECTION") | |
theta = st.sidebar.slider( | |
"Theta", min_value=-pi, max_value=pi, step=0.5, value=0.0, help="Rotational angle in Horizontal direction" | |
) | |
phi = st.sidebar.slider( | |
"Phi", min_value=0.0, max_value=0.5 * pi, step=0.1, value=1.0, help="Rotational angle in Vertical direction" | |
) | |
radius = st.sidebar.slider( | |
"Radius", min_value=2.0, max_value=6.0, step=1.0, value=3.0, help="Distance between object and the viewer" | |
) | |
st.markdown("") | |
with st.spinner("Rendering View..."): | |
with st.spinner("It may take 2-3 mins. So, why don't you read our report in the meantime"): | |
pred_color, _ = render_predict_from_pose(state, theta, phi, radius) | |
im = predict_to_image(pred_color) | |
w, _ = im.size | |
new_w = int(2 * w) | |
im = im.resize(size=(new_w, new_w)) | |
# diet_nerf_col = st.beta_columns(1) | |
# diet_nerf_col.markdown( | |
# """<h4 style='text-align: center'>DietNerF</h4>""", unsafe_allow_html=True | |
# ) | |
st.image(im, use_column_width="auto") | |