import os import builtins import math import json import streamlit as st import gdown from demo.src.models import load_trained_model from demo.src.utils import render_predict_from_pose, predict_to_image st.set_page_config(page_title="DietNeRF") with open("config.json") as f: cfg = json.loads(f.read()) MODEL_DIR = "models" SCENES_LIST = ["Mic", "Chair", "Lego", "Drums", "Ship", "Hotdog"] def select_model(obj_select): DIET_NERF_MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"] DIET_NERF_FILE_ID = cfg[obj_select]["DIET_NERF_FILE_ID"] NERF_MODEL_NAME = cfg[obj_select]["NERF_MODEL_NAME"] NERF_FILE_ID = cfg[obj_select]["NERF_FILE_ID"] return DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID pi = math.pi st.title("DietNeRF") st.sidebar.markdown( """
""", unsafe_allow_html=True, ) st.sidebar.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.header("SELECT YOUR VIEW DIRECTION") theta = st.sidebar.slider( "Theta", min_value=-pi, max_value=pi, step=0.5, value=0.0, help="Rotational angle in Horizontal direction" ) phi = st.sidebar.slider( "Phi", min_value=0.0, max_value=0.5 * pi, step=0.1, value=1.0, help="Rotational angle in Vertical direction" ) radius = st.sidebar.slider( "Radius", min_value=2.0, max_value=6.0, step=1.0, value=3.0, help="Distance between object and the viewer" ) caption = ( "`DietNeRF` achieves state-of-the-art few-shot learning capacity in 3D model reconstruction. " "Thanks to the 2D supervision by `CLIP (aka. Semantic Consisteny Loss)`, " "it can render novel and challenging views with `ONLY 8 training images`, " "**outperforming** original [NeRF](https://www.matthewtancik.com/nerf)!" ) st.markdown(caption) st.markdown( "> 📒 NOTE: Look at the " "[Experimental Results](https://www.notion.so/DietNeRF-Putting-NeRF-on-a-Diet-4aeddae95d054f1d91686f02bdb74745#0f6bc8f1008d4765b9b4635999626d4b) " "section in our report to get a detailed comparison of differences between `DietNeRF` and `NeRF`." ) obj_select = st.selectbox("Select a Scene", SCENES_LIST, index=0) DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID, NERF_MODEL_NAME, NERF_FILE_ID = select_model(obj_select) @st.cache(show_spinner=False) def download_diet_nerf_model(): os.makedirs(MODEL_DIR, exist_ok=True) diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME) url = f"https://drive.google.com/uc?id={DIET_NERF_FILE_ID}" gdown.download(url, diet_nerf_model_path, quiet=False) print(f"Model downloaded from google drive: {diet_nerf_model_path}") # def download_nerf_model(): # nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME) # url = f"https://drive.google.com/uc?id={NERF_FILE_ID}" # gdown.download(url, nerf_model_path, quiet=False) # print(f"Model downloaded from google drive: {nerf_model_path}") @st.cache(show_spinner=False, allow_output_mutation=True) def fetch_diet_nerf_model(): model, state = load_trained_model(MODEL_DIR, DIET_NERF_MODEL_NAME) return model, state # @st.cache(show_spinner=False, allow_output_mutation=True) # def fetch_nerf_model(): # model, state = load_trained_model(MODEL_DIR, NERF_MODEL_NAME) # return model, state diet_nerf_model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME) if not os.path.isfile(diet_nerf_model_path): download_diet_nerf_model() # nerf_model_path = os.path.join(MODEL_DIR, NERF_MODEL_NAME) # if not os.path.isfile(nerf_model_path): # download_nerf_model() diet_nerf_model, diet_nerf_state = fetch_diet_nerf_model() # nerf_model, nerf_state = fetch_nerf_model() st.markdown("") with st.spinner("Rendering view..."): with st.spinner( "It may take around 1-2 mins. In the meantime, why don't you take a look at our report if you haven't already :)" ): st.markdown( "> :bomb: WARNING: The rendered view does not fully reflect the true quality of the view generated by the model " "because it has been downsampled to speedup the process." ) dn_pred_color, _ = render_predict_from_pose(diet_nerf_state, theta, phi, radius) dn_im = predict_to_image(dn_pred_color) dn_w, _ = dn_im.size dn_new_w = int(2 * dn_w) dn_im = dn_im.resize(size=(dn_new_w, dn_new_w)) # n_pred_color, _ = render_predict_from_pose(nerf_state, theta, phi, radius) # n_im = predict_to_image(n_pred_color) # n_w, _ = n_im.size # n_new_w = int(2 * n_w) # n_im = n_im.resize(size=(n_new_w, n_new_w)) # diet_nerf_col, nerf_col = st.beta_columns([1, 1]) st.markdown(f"""