import os import builtins import math import json import streamlit as st import gdown from demo.src.models import load_trained_model from demo.src.utils import render_predict_from_pose, predict_to_image st.set_page_config(page_title="DietNeRF") with open("config.json") as f: cfg = json.loads(f.read()) MODEL_DIR = "models" def select_model(): obj_select = st.selectbox("Select a Scene", ("Mic", "Chair", "Lego", "Ship", "Hotdog")) DIET_NERF_MODEL_NAME = cfg[obj_select]["DIET_NERF_MODEL_NAME"] DIET_NERF_FILE_ID = cfg[obj_select]["DIET_NERF_FILE_ID"] return DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID st.title("DietNeRF") caption = ( "DietNeRF achieves SoTA few-shot learning capacity in 3D model reconstruction. " "Thanks to the 2D supervision by CLIP (aka. _Semantic Consisteny Loss_), " "it can render novel and challenging views with ONLY 8 training images, " "outperforming original NeRF!" ) st.markdown(caption) st.markdown("") DIET_NERF_MODEL_NAME, DIET_NERF_FILE_ID = select_model() @st.cache(show_spinner=False) def download_model(): os.makedirs(MODEL_DIR, exist_ok=True) _model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME) url = f"https://drive.google.com/uc?id={DIET_NERF_FILE_ID}" gdown.download(url, _model_path, quiet=False) print(f"Model downloaded from google drive: {_model_path}") @st.cache(show_spinner=False, allow_output_mutation=True) def fetch_model(): model, state = load_trained_model(MODEL_DIR, DIET_NERF_MODEL_NAME) return model, state model_path = os.path.join(MODEL_DIR, DIET_NERF_MODEL_NAME) if not os.path.isfile(model_path): download_model() model, state = fetch_model() pi = math.pi st.sidebar.markdown( """