Spaces:
Runtime error
Runtime error
from transformers import T5ForConditionalGeneration, T5TokenizerFast, pipeline | |
from transformers.models.f_t5.modeling_t5 import \ | |
T5ForConditionalGeneration as FT5ForConditionalGeneration | |
from transformers.models.f_t5.tokenization_t5_fast import \ | |
T5TokenizerFast as FT5TokenizerFast | |
import json | |
with open('examples.json') as f: | |
examples = json.load(f)['article'] | |
model_name = "flax-community/ft5-cnn-dm" | |
ft5_model = FT5ForConditionalGeneration.from_pretrained(model_name) | |
ft5_tokenizer = FT5TokenizerFast.from_pretrained(model_name) | |
ft5_summarizer = pipeline( | |
"summarization", model=ft5_model, tokenizer=ft5_tokenizer, framework="pt" | |
) | |
#model_name = 'flax-community/t5-base-cnn-dm' | |
#t5_model = T5ForConditionalGeneration.from_pretrained(model_name) | |
#t5_tokenizer = T5TokenizerFast.from_pretrained(model_name) | |
#predict_t5 = get_predict(t5_model, t5_tokenizer) | |
def fn(text, do_sample, min_length, max_length,temperature, top_p): | |
out = ft5_summarizer(text, do_sample=do_sample, min_length=min_length, | |
max_length=max_length, temperature=temperature, top_p=top_p, | |
truncation=True) | |
return out[0]['summary_text'] | |
import gradio as gr | |
interface = gr.Interface( | |
fn, | |
inputs=[ | |
gr.inputs.Textbox(lines=10, label='text'), | |
gr.inputs.Checkbox(label='do_sample'), | |
gr.inputs.Slider(1, 128, step=1, default=64, label='min_length'), | |
gr.inputs.Slider(1, 128, step=1, default=64, label='max_length'), | |
gr.inputs.Slider(0.0, 1.0, step=0.1, default=1, label='temperature'), | |
gr.inputs.Slider(0.0, 1.0, step=0.1, default=1, label='top_p'), | |
], | |
outputs=gr.outputs.Textbox(), | |
#server_port=8080, | |
#server_name='0.0.0.0', | |
examples=[[ex] for ex in examples], | |
title='F-T5 News Summarization', | |
description=""" | |
F-T5 is a hybrid encoder-decoder model based on T5 and FNet. | |
The model architecture is based on T5, except the encoder self attention is replaced by fourier transform as in FNet. | |
The model is pre-trained on openwebtext, fine-tuned on CNN/DM. | |
""" | |
) | |
interface.launch() | |