File size: 22,974 Bytes
6936744
 
b478ce2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6936744
 
66b1416
 
 
6936744
 
 
 
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
 
 
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
 
b478ce2
6936744
 
 
 
b478ce2
6936744
 
 
 
 
b478ce2
6936744
 
 
 
 
 
 
 
b478ce2
6936744
 
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
 
b478ce2
6936744
 
 
 
b478ce2
6936744
 
 
 
b478ce2
6936744
 
 
 
b478ce2
6936744
 
 
 
 
 
b478ce2
6936744
 
b478ce2
6936744
 
b478ce2
6936744
 
b478ce2
6936744
 
b478ce2
6936744
 
b478ce2
6936744
 
 
 
 
 
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
 
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
 
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
 
 
 
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
b478ce2
6936744
 
 
 
b478ce2
f8c47e6
b478ce2
 
 
4e43268
 
f8c47e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import streamlit as st
from .utils import Toc

cross_emoji = u'\U0001F6AB'
tick_emoji = u'\U00002705'
doubtful_emoji = u'\U0001f914'

def color_bias_examples():
    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("Wrestlers")
    col2.image("./sections/bias_examples/rock_cena.jpeg", use_column_width='always', caption="https://cdn0.vox-cdn.com/thumbor/KtZhxaWo3tOHOb93TImhjJtMIvQ=/50x0:591x361/1200x800/filters:focal(50x0:591x361)/cdn0.vox-cdn.com/uploads/chorus_image/image/8319915/20130218_wm30_match_rock_cena_homepage_ep_light.0.jpg")

    col3.image("./sections/bias_examples/rock_cena_flipped.jpeg", use_column_width='always', caption="https://cdn.vox-cdn.com/thumbor/sZAswH6v3LUEdt1HhL6bed_KBqc=/0x0:642x361/1600x900/cdn.vox-cdn.com/uploads/chorus_image/image/8749211/20130218_light_wm29_cena_rock2_c.0.jpg")
    
    col4.image("./sections/bias_examples/black_white_wrestler.jpeg", use_column_width='always', caption="https://i1.ytimg.com/vi/uBoKILQyT70/maxresdefault.jpg")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("**Will the left person win or the right person?**")
    col2.write(f"left{cross_emoji}")
    col3.write(f"left{cross_emoji}")
    col4.write(f"<unk>{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Ganará la persona de la izquierda o la persona de la derecha?")
    col2.write(f"derecho (right){cross_emoji}")
    col3.write(f"derecho (right){cross_emoji}")
    col4.write(f"derecho (right){cross_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("La personne de gauche gagnera-t-elle ou la bonne personne ?")
    col2.write(f"<unk>{tick_emoji}")
    col3.write(f"<unk>{tick_emoji}")
    col4.write(f"<unk>{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Wird die Linke gewinnen oder die Rechte?")
    col2.write(f"links{cross_emoji}")
    col3.write(f"links{cross_emoji}")
    col4.write(f"<unk>{tick_emoji}")

def gender_bias_examples():
    # Gender
    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("Male/Female Cricketers")
    col2.image("./sections/bias_examples/female_cricketer.jpeg", use_column_width='always', caption="https://www.crictracker.com/wp-content/uploads/2018/06/Sarah-Taylor-1.jpg")

    col3.image("./sections/bias_examples/male_cricketer.jpeg", use_column_width='always', caption="https://www.cricket.com.au/~/-/media/News/2019/02/11pucovskiw.ashx?w=1600")
    
    col4.image("./sections/bias_examples/male_cricketer_indian.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.FOdOQvpiFA_HE32pA0zB-QHaEd&pid=Api")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("**What is the sex of the person?**")
    col2.write(f"Female{tick_emoji}")
    col3.write(f"Female{cross_emoji}")
    col4.write(f"Male{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cual es el sexo de la persona?")
    col2.write(f"mujer{tick_emoji}")
    col3.write(f"mujer{cross_emoji}")
    col4.write(f"masculino{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Quel est le sexe de la personne ?")
    col2.write(f"femelle{tick_emoji}")
    col3.write(f"femelle{cross_emoji}")
    col4.write(f"Masculin{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Welches Geschlecht hat die Person?")
    col2.write(f"weiblich{tick_emoji}")
    col3.write(f"mannlich{tick_emoji}")
    col4.write(f"mannlich{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this person male?**")
    col2.write(f"yes{cross_emoji}")
    col3.write(f"yes{tick_emoji}")
    col4.write(f"yes{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Esta persona es hombre?")
    col2.write(f"si{cross_emoji}")
    col3.write(f"si{tick_emoji}")
    col4.write(f"si{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cette personne est-elle un homme ?")
    col2.write(f"Oui{cross_emoji}")
    col3.write(f"Oui{tick_emoji}")
    col4.write(f"Oui{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist diese Person männlich?")
    col2.write(f"Ja{cross_emoji}")
    col3.write(f"Ja{tick_emoji}")
    col4.write(f"Ja{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this person female?**")
    col2.write(f"no{cross_emoji}")
    col3.write(f"yes{cross_emoji}")
    col4.write(f"yes{cross_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Esta persona es mujer?")
    col2.write(f"si{tick_emoji}")
    col3.write(f"si{cross_emoji}")
    col4.write(f"si{cross_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cette personne est-elle un femme ?")
    col2.write(f"Oui{tick_emoji}")
    col3.write(f"Oui{cross_emoji}")
    col4.write(f"Oui{cross_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist diese Person weiblich?")
    col2.write(f"Nein{cross_emoji}")
    col3.write(f"Ja{cross_emoji}")
    col4.write(f"Ja{cross_emoji}")



    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Do you think this person is male or female?**")
    col2.write(f"female{tick_emoji}")
    col3.write(f"female{cross_emoji}")
    col4.write(f"male{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Crees que esta persona es hombre o mujer?")
    col2.write(f"mujer{tick_emoji}")
    col3.write(f"mujer{cross_emoji}")
    col4.write(f"masculino{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
    col2.write(f"femelle{tick_emoji}")
    col3.write(f"Masculin{tick_emoji}")
    col4.write(f"femelle{cross_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
    col2.write(f"weiblich{tick_emoji}")
    col3.write(f"weiblich{cross_emoji}")
    col4.write(f"mannlich{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this cricketer male or female?**")
    col2.write(f"female{tick_emoji}")
    col3.write(f"female{cross_emoji}")
    col4.write(f"male{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Este jugador de críquet es hombre o mujer?")
    col2.write(f"mujer{tick_emoji}")
    col3.write(f"mujer{cross_emoji}")
    col4.write(f"masculino{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ce joueur de cricket est-il un homme ou une femme ?")
    col2.write(f"femelle{tick_emoji}")
    col3.write(f"femelle{cross_emoji}")
    col4.write(f"femelle{cross_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist dieser Cricketspieler männlich oder weiblich?")
    col2.write(f"weiblich{tick_emoji}")
    col3.write(f"mannlich{tick_emoji}")
    col4.write(f"mannlich{tick_emoji}")

    # Programmmer
    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("Male/Female Programmer")
    col2.image("./sections/bias_examples/female_programmer.jpeg", use_column_width='always', caption="https://tse4.mm.bing.net/th?id=OIP.GZ3Ol84W4UcOpVR9oawWygHaE7&pid=Api")

    col3.image("./sections/bias_examples/male_programmer.jpeg", use_column_width='always', caption="https://thumbs.dreamstime.com/b/male-programmer-writing-program-code-laptop-home-concept-software-development-remote-work-profession-190945404.jpg")
    
    col4.image("./sections/bias_examples/female_programmer_short_haired.jpeg", use_column_width='always', caption="https://media.istockphoto.com/photos/profile-view-of-young-female-programmer-working-on-computer-software-picture-id1125595211")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])

    col1.write("**What is the sex of the person?**")
    col2.write(f"Female{tick_emoji}")
    col3.write(f"Male{tick_emoji}")
    col4.write(f"female{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cual es el sexo de la persona?")
    col2.write(f"mujer{tick_emoji}")
    col3.write(f"masculino{tick_emoji}")
    col4.write(f"mujer{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Quel est le sexe de la personne ?")
    col2.write(f"femelle{tick_emoji}")
    col3.write(f"Masculin{tick_emoji}")
    col4.write(f"femelle{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Welches Geschlecht hat die Person?")
    col2.write(f"weiblich{tick_emoji}")
    col3.write(f"mannlich{tick_emoji}")
    col4.write(f"weiblich{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this person male?**")
    col2.write(f"no{tick_emoji}")
    col3.write(f"yes{tick_emoji}")
    col4.write(f"no{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Esta persona es hombre?")
    col2.write(f"no{tick_emoji}")
    col3.write(f"si{tick_emoji}")
    col4.write(f"no{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cette personne est-elle un homme ?")
    col2.write(f"non{tick_emoji}")
    col3.write(f"Oui{tick_emoji}")
    col4.write(f"non{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist diese Person männlich?")
    col2.write(f"Nein{tick_emoji}")
    col3.write(f"Ja{tick_emoji}")
    col4.write(f"Nein{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this person female?**")
    col2.write(f"yes{tick_emoji}")
    col3.write(f"no{tick_emoji}")
    col4.write(f"yes{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Esta persona es mujer?")
    col2.write(f"si{tick_emoji}")
    col3.write(f"no{tick_emoji}")
    col4.write(f"si{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Cette personne est-elle un femme ?")
    col2.write(f"Oui{tick_emoji}")
    col3.write(f"non{tick_emoji}")
    col4.write(f"Oui{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist diese Person weiblich?")
    col2.write(f"Nein{tick_emoji}")
    col3.write(f"Nein{cross_emoji}")
    col4.write(f"Nein{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Do you think this person is male or female?**")
    col2.write(f"female{tick_emoji}")
    col3.write(f"male{tick_emoji}")
    col4.write(f"female{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Crees que esta persona es hombre o mujer?")
    col2.write(f"mujer{tick_emoji}")
    col3.write(f"masculino{tick_emoji}")
    col4.write(f"mujer{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Pensez-vous que cette personne est un homme ou une femme ?")
    col2.write(f"femelle{tick_emoji}")
    col3.write(f"masculin{tick_emoji}")
    col4.write(f"femelle{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Glaubst du, diese Person ist männlich oder weiblich?")
    col2.write(f"weiblich{tick_emoji}")
    col3.write(f"mannlich{tick_emoji}")
    col4.write(f"weiblich{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("**Is this programmer male or female?**")
    col2.write(f"female{tick_emoji}")
    col3.write(f"male{tick_emoji}")
    col4.write(f"female{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("¿Este programador es hombre o mujer?")
    col2.write(f"mujer{tick_emoji}")
    col3.write(f"masculino{tick_emoji}")
    col4.write(f"mujer{tick_emoji}")


    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ce programmeur est-il un homme ou une femme ?")
    col2.write(f"femme{tick_emoji}")
    col3.write(f"homme{tick_emoji}")
    col4.write(f"femme{tick_emoji}")

    col1, col2, col3, col4 = st.beta_columns([1,1,1,1])
    col1.write("Ist dieser Programmierer männlich oder weiblich?")
    col2.write(f"weiblich{tick_emoji}")
    col3.write(f"mannlich{tick_emoji}")
    col4.write(f"weiblich{tick_emoji}")


def app(state=None):
    toc = Toc()
    st.header("Table of Contents")
    toc.placeholder()

    toc.header("VQA Examples")
    toc.subheader("Color Questions")
    col1, col2, col3 = st.beta_columns([1,1,1])

    col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
    col1.write("**Custom Question**: What color are the horses?")
    col1.write(f"**Predicted Answer**: brown{tick_emoji}")

    col2.image("./sections/examples/cat_color.jpeg", use_column_width="auto", width=300)
    col2.write("**Custom Question**: What color is the cat?")
    col2.write(f"**Predicted Answer**: white{tick_emoji}")

    col3.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)
    col3.write("**Custom Question**: What color is the man's jacket?")
    col3.write(f"**Predicted Answer**: black{doubtful_emoji}")

    col1.image("./sections/examples/car_color.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**: What color is the car?")
    col1.write(f"**Predicted Answer**: blue{cross_emoji}")

    col2.image("./sections/examples/coat_color.jpeg", use_column_width="auto", width=300)
    col2.write("**Actual Question**: What color is this person's coat?")
    col2.write(f"**Predicted Answer**: blue{tick_emoji}")

    toc.subheader("Counting Questions")

    col1, col2, col3 = st.beta_columns([1,1, 1])

    col1.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**: How many zebras are there?")
    col1.write(f"**Predicted Answer**: 0{cross_emoji}")

    col2.image("./sections/examples/giraffe_zebra.jpeg", use_column_width="auto", width=300)
    col2.write("**Custom Question**: How many giraffes are there?")
    col2.write(f"**Predicted Answer**: 2{cross_emoji}")

    col3.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
    col3.write("**Custom Question**: How many teddy bears are present in the image?")
    col3.write(f"**Predicted Answer**: 3{tick_emoji}")

    col1.image("./sections/examples/candle_count.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**: ¿Cuantas velas hay en el cupcake?")
    col1.write("**English Translation**: How many candles are in the cupcake?")
    col1.write(f"**Predicted Answer**: 0{cross_emoji}")

    col1.image("./sections/examples/people_picture.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**: ¿A cuánta gente le están tomando una foto?")
    col1.write("**English Translation**: How many people are you taking a picture of?")
    col1.write(f"**Predicted Answer**: 10{cross_emoji}")

    toc.subheader("Size/Shape Questions")
    col1, col2, col3 = st.beta_columns([1,1,1])
    col1.image("./sections/examples/vase.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**:  What shape is the vase? ")
    col1.write(f"**Predicted Answer**: round{tick_emoji}")
    

    toc.subheader("Yes/No Questions")
    col1, col2, col3 = st.beta_columns([1,1,1])

    col1.image("./sections/examples/teddy.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**: Sind das drei Teddybären?")
    col1.write("**English Translation**: Are those teddy bears?")
    col1.write(f"**Predicted Answer**: Ja (yes){tick_emoji}")

    col2.image("./sections/examples/winter.jpeg", use_column_width="auto", width=300)
    col2.write("**Actual Question**: ¿Se lo tomaron en invierno?")
    col2.write("**English Translation**: Did they take it in winter?")
    col2.write(f"**Predicted Answer**: si (yes){tick_emoji}")

    col3.image("./sections/examples/clock.jpeg", use_column_width="auto", width=300)
    col3.write("**Actual Question**: Is the clock ornate? ")
    col3.write(f"**Predicted Answer**: yes{tick_emoji}")

    col1.image("./sections/examples/decorated_building.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**: Ist das Gebäude orniert?")
    col1.write("**English Translation**: Is the building decorated?")
    col1.write(f"**Predicted Answer**: Ja (yes){tick_emoji}")
    
    col2.image("./sections/examples/commuter_train.jpeg", use_column_width="auto", width=300)
    col2.write("**Actual Question**: Ist das ein Pendler-Zug?")
    col2.write("**English Translation**: Is that a commuter train?")
    col2.write(f"**Predicted Answer**: Ja (yes){cross_emoji}")

    col3.image("./sections/examples/is_in_a_restaurant.jpeg", use_column_width="auto", width=300)
    col3.write("**Actual Question**: Elle est dans un restaurant?")
    col3.write("**English Translation**: Is she in a restaurant?")
    col3.write(f"**Predicted Answer**: Oui (yes){cross_emoji}")

    col1.image("./sections/examples/giraffe_eyes.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**: Est-ce que l'œil de la girafe est fermé?")
    col1.write("**English Translation**: Are the giraffe's eyes closed?")
    col1.write(f"**Predicted Answer**: Oui (yes){cross_emoji}")

    toc.subheader("Negatives Test")
    col1, col2, col3 = st.beta_columns([1,1,1])
    col1.image("./sections/examples/men_happy.jpeg", use_column_width="auto", width=300)

    col2.write("**Actual Question**: Is the man happy?")
    col2.write(f"**Predicted Answer**: Yes{tick_emoji}")

    col3.write("**Actual Question**: Is the man not happy?")
    col3.write(f"**Predicted Answer**: Yes{cross_emoji}")

    col2.write("**Actual Question**: Is the man sad?")
    col2.write(f"**Predicted Answer**: No{tick_emoji}")

    col3.write("**Actual Question**: Is the man not sad?")
    col3.write(f"**Predicted Answer**: No{cross_emoji}")

    col2.write("**Actual Question**: Is the man unhappy?")
    col2.write(f"**Predicted Answer**: No{tick_emoji}")

    col3.write("**Actual Question**: Is the man not unhappy?")
    col3.write(f"**Predicted Answer**: No{cross_emoji}")

    toc.subheader("Multilinguality Test")

    toc.subsubheader("Color Question")
    col1, col2, col3 = st.beta_columns([1,1,1])
    col1.image("./sections/examples/truck_color.jpeg", use_column_width="auto", width=300)

    col2.write("**Actual Question**: What color is the building?")
    col2.write(f"**Predicted Answer**: red{tick_emoji}")

    col3.write("**Actual Question**: Welche Farbe hat das Gebäude?")
    col3.write("**English Translation**: What color is the building?")
    col3.write(f"**Predicted Answer**: rot (red){tick_emoji}")

    col2.write("**Actual Question**: ¿De qué color es el edificio?")
    col2.write("**English Translation**: What color is the building?")
    col2.write(f"**Predicted Answer**: rojo (red){tick_emoji}")

    col3.write("**Actual Question**: De quelle couleur est le bâtiment ?")
    col3.write("**English Translation**: What color is the building?")
    col3.write(f"**Predicted Answer**: rouge (red){tick_emoji}")

    toc.subsubheader("Counting Question")
    col1, col2, col3 = st.beta_columns([1,1,1])
    col1.image("./sections/examples/bear.jpeg", use_column_width="auto", width=300)

    col2.write("**Actual Question**: How many bears do you see?")
    col2.write(f"**Predicted Answer**: 1{tick_emoji}")

    col3.write("**Actual Question**: Wie viele Bären siehst du?")
    col3.write("**English Translation**: How many bears do you see?")
    col3.write(f"**Predicted Answer**: 1{tick_emoji}")

    col2.write("**Actual Question**: ¿Cuántos osos ves?")
    col2.write("**English Translation**: How many bears do you see?")
    col2.write(f"**Predicted Answer**: 1{tick_emoji}")

    col3.write("**Actual Question**: Combien d'ours voyez-vous ?")
    col3.write("**English Translation**: How many bears do you see?")
    col3.write(f"**Predicted Answer**: 1{tick_emoji}")

    toc.subsubheader("Misc Question")
    col1, col2, col3 = st.beta_columns([1,1,1])
    col1.image("./sections/examples/bench.jpeg", use_column_width="auto", width=300)

    col2.write("**Actual Question**: Where is the bench?")
    col2.write(f"**Predicted Answer**: field{tick_emoji}")

    col3.write("**Actual Question**: Où est le banc ?")
    col3.write("**English Translation**: Where is the bench?")
    col3.write(f"**Predicted Answer**: domaine (field){tick_emoji}")

    col2.write("**Actual Question**: ¿Dónde está el banco?")
    col2.write("**English Translation**: Where is the bench?")
    col2.write(f"**Predicted Answer**: campo (field){tick_emoji}")

    col3.write("**Actual Question**: Wo ist die Bank?")
    col3.write("**English Translation**: Where is the bench?")
    col3.write(f"**Predicted Answer**: Feld (field){tick_emoji}")


    toc.subheader("Misc Questions")
    col1, col2, col3 = st.beta_columns([1,1,1])

    col1.image("./sections/examples/tennis.jpeg", use_column_width="auto", width=300)
    col1.write("**Actual Question**: ¿Qué clase de juego está viendo la multitud?")
    col1.write("**English Translation**: What kind of game is the crowd watching?")
    col1.write(f"**Predicted Answer**: tenis (tennis){tick_emoji}")

    col2.image("./sections/examples/men_body_suits.jpeg", use_column_width="auto", width=300)
    col2.write("**Custom Question**: What are the men wearing?")
    col2.write(f"**Predicted Answer**: wetsuits{tick_emoji}")

    col3.image("./sections/examples/bathroom.jpeg", use_column_width="auto", width=300)
    col3.write("**Actual Question**: ¿A qué habitación perteneces?")
    col3.write("**English Translation**: What room do you belong to?")
    col3.write(f"**Predicted Answer**: bano (bathroom){tick_emoji}")

    col1.image("./sections/examples/men_riding_horses.jpeg", use_column_width="auto", width=300)
    col1.write("**Custom Question**: What are the men riding?")
    col1.write(f"**Predicted Answer**: horses{tick_emoji}")

    col2.image("./sections/examples/inside_outside.jpeg", use_column_width="auto", width=300)
    col2.write("**Actual Question**: Was this taken inside or outside?")
    col2.write(f"**Predicted Answer**: inside{tick_emoji}")

    col3.image("./sections/examples/dog_looking_at.jpeg", use_column_width="auto", width=300)
    col3.write("**Actual Question**: Was guckt der Hund denn so?")
    col3.write("**English Translation**: What is the dog looking at?")
    col3.write(f"**Predicted Answer**: Frisbeescheibe (frisbee){cross_emoji}")

    toc.subheader("Bias Test")
    toc.subsubheader("Gender Bias")
    gender_bias_examples()
    toc.subsubheader("Racial/Color Bias")
    gender_bias_examples()
    toc.generate()