File size: 5,734 Bytes
2bbf92c
 
e289356
 
 
2bbf92c
e289356
 
 
9e939e7
e289356
 
690384a
 
 
e289356
690384a
 
 
e289356
690384a
 
 
f4963f2
 
 
690384a
69e32d1
2bbf92c
 
 
690384a
69e32d1
b5bd188
690384a
 
 
2bbf92c
690384a
 
2bbf92c
69e32d1
690384a
69e32d1
 
9e939e7
 
 
 
 
690384a
 
 
69e32d1
 
 
 
 
 
 
690384a
2bbf92c
 
01fc68e
 
 
 
 
0ef2c4e
01fc68e
 
583a144
690384a
 
 
583a144
e289356
0ef2c4e
e289356
f4963f2
0808df5
 
 
 
 
7a89f67
0808df5
e289356
 
0808df5
 
 
 
 
 
 
 
69e32d1
 
2bbf92c
f4963f2
690384a
 
 
 
 
 
 
2bbf92c
f4963f2
2bbf92c
f907aa9
f4963f2
f907aa9
e289356
 
 
2bbf92c
690384a
 
 
 
 
2bbf92c
690384a
2bbf92c
f4963f2
2bbf92c
f907aa9
2bbf92c
f907aa9
 
 
 
 
 
 
 
2bbf92c
f4963f2
2bbf92c
69e32d1
f907aa9
69e32d1
e289356
2bbf92c
e289356
 
 
 
 
0808df5
690384a
 
7c9f5a6
2bbf92c
 
 
690384a
0808df5
690384a
 
 
 
e289356
690384a
0808df5
7a89f67
e289356
 
 
 
 
 
 
0808df5
2bbf92c
690384a
2bbf92c
690384a
b5bd188
2bbf92c
 
f4963f2
2bbf92c
690384a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import json
import os
from io import BytesIO

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from mtranslate import translate
from PIL import Image
from streamlit.elements import markdown

from model.flax_clip_vision_bert.modeling_clip_vision_bert import (
    FlaxCLIPVisionBertForSequenceClassification,
)
from session import _get_state
from utils import (
    get_text_attributes,
    get_top_5_predictions,
    get_transformed_image,
    plotly_express_horizontal_bar_plot,
    translate_labels,
)

state = _get_state()


@st.cache(persist=True)
def load_model(ckpt):
    return FlaxCLIPVisionBertForSequenceClassification.from_pretrained(ckpt)


@st.cache(persist=True)
def predict(transformed_image, question_inputs):
    return np.array(model(pixel_values=transformed_image, **question_inputs)[0][0])


def softmax(logits):
    return np.exp(logits) / np.sum(np.exp(logits), axis=0)


def read_markdown(path, parent="./sections/"):
    with open(os.path.join(parent, path)) as f:
        return f.read()


# def resize_height(image, new_height):
#     h, w, c = image.shape
#     new_width = int(w * new_height / h)
#     return cv2.resize(image, (new_width, new_height))

checkpoints = ["./ckpt/ckpt-60k-5999"]  # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv("dummy_vqa_multilingual.tsv", sep="\t")
code_to_name = {
    "en": "English",
    "fr": "French",
    "de": "German",
    "es": "Spanish",
}

with open("answer_reverse_mapping.json") as f:
    answer_reverse_mapping = json.load(f)


st.set_page_config(
    page_title="Multilingual VQA",
    layout="wide",
    initial_sidebar_state="collapsed",
    page_icon="./misc/mvqa-logo-3-white.png",
)

st.title("Multilingual Visual Question Answering")
st.write(
    "[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)"
)

image_col, intro_col = st.beta_columns([3, 8])
image_col.image("./misc/mvqa-logo-3-white.png", use_column_width="always")
intro_col.write(read_markdown("intro.md"))
with st.beta_expander("Usage"):
    st.write(read_markdown("usage.md"))

with st.beta_expander("Article"):
    st.write(read_markdown("abstract.md"))
    st.write(read_markdown("caveats.md"))
    st.write("## Methodology")
    st.image(
        "./misc/Multilingual-VQA.png",
        caption="Masked LM model for Image-text Pretraining.",
    )
    st.markdown(read_markdown("pretraining.md"))
    st.markdown(read_markdown("finetuning.md"))
    st.write(read_markdown("challenges.md"))
    st.write(read_markdown("social_impact.md"))
    st.write(read_markdown("references.md"))
    st.write(read_markdown("checkpoints.md"))
    st.write(read_markdown("acknowledgements.md"))

first_index = 20
# Init Session State
if state.image_file is None:
    state.image_file = dummy_data.loc[first_index, "image_file"]
    state.question = dummy_data.loc[first_index, "question"].strip("- ")
    state.answer_label = dummy_data.loc[first_index, "answer_label"]
    state.question_lang_id = dummy_data.loc[first_index, "lang_id"]
    state.answer_lang_id = dummy_data.loc[first_index, "lang_id"]

    image_path = os.path.join("images", state.image_file)
    image = plt.imread(image_path)
    state.image = image

# col1, col2 = st.beta_columns([6, 4])

if st.button(
    "Get a random example",
    help="Get a random example from the 100 `seeded` image-text pairs.",
):
    sample = dummy_data.sample(1).reset_index()
    state.image_file = sample.loc[0, "image_file"]
    state.question = sample.loc[0, "question"].strip("- ")
    state.answer_label = sample.loc[0, "answer_label"]
    state.question_lang_id = sample.loc[0, "lang_id"]
    state.answer_lang_id = sample.loc[0, "lang_id"]

    image_path = os.path.join("images", state.image_file)
    image = plt.imread(image_path)
    state.image = image

# col2.write("OR")

# uploaded_file = col2.file_uploader(
#     "Upload your image",
#     type=["png", "jpg", "jpeg"],
#     help="Upload a file of your choosing.",
# )
# if uploaded_file is not None:
#     state.image_file = os.path.join("images/val2014", uploaded_file.name)
#     state.image = np.array(Image.open(uploaded_file))

transformed_image = get_transformed_image(state.image)

# Display Image
st.image(state.image, use_column_width="auto")

new_col1, new_col2 = st.beta_columns([5, 5])
# Display Question
question = new_col1.text_input(
    label="Question",
    value=state.question,
    help="Type your question regarding the image above in one of the four languages.",
)
new_col1.markdown(
    f"""**English Translation**: {question if state.question_lang_id == "en" else translate(question, 'en')}"""
)

question_inputs = get_text_attributes(question)

# Select Language
options = ["en", "de", "es", "fr"]
state.answer_lang_id = new_col2.selectbox(
    "Answer Language",
    index=options.index(state.answer_lang_id),
    options=options,
    format_func=lambda x: code_to_name[x],
    help="The language to be used to show the top-5 labels.",
)

actual_answer = answer_reverse_mapping[str(state.answer_label)]
new_col2.markdown(
    "**Actual Answer**: "
    + translate_labels([actual_answer], state.answer_lang_id)[0]
    + " ("
    + actual_answer
    + ")"
)

# Display Top-5 Predictions
with st.spinner("Loading model..."):
    model = load_model(checkpoints[0])
with st.spinner("Predicting..."):
    logits = predict(transformed_image, dict(question_inputs))
logits = softmax(logits)
labels, values = get_top_5_predictions(logits, answer_reverse_mapping)
translated_labels = translate_labels(labels, state.answer_lang_id)
fig = plotly_express_horizontal_bar_plot(values, translated_labels)
st.plotly_chart(fig, use_container_width=True)