gchhablani's picture
Update application
627e34d
raw
history blame
4.64 kB
from io import BytesIO
import streamlit as st
import pandas as pd
import json
import os
import numpy as np
from streamlit.elements import markdown
from model.flax_clip_vision_bert.modeling_clip_vision_bert import FlaxCLIPVisionBertForSequenceClassification
from utils import get_transformed_image, get_text_attributes, get_top_5_predictions, plotly_express_horizontal_bar_plot, translate_labels
import matplotlib.pyplot as plt
from mtranslate import translate
from PIL import Image
from session import _get_state
state = _get_state()
@st.cache(persist=True)
def load_model(ckpt):
return FlaxCLIPVisionBertForSequenceClassification.from_pretrained(ckpt)
@st.cache(persist=True)
def predict(transformed_image, question_inputs):
return np.array(model(pixel_values = transformed_image, **question_inputs)[0][0])
def softmax(logits):
return np.exp(logits)/np.sum(np.exp(logits), axis=0)
def read_markdown(path, parent="./sections/"):
with open(os.path.join(parent,path)) as f:
return f.read()
checkpoints = ['./ckpt/ckpt-60k-5999'] # TODO: Maybe add more checkpoints?
dummy_data = pd.read_csv('dummy_vqa_multilingual.tsv', sep='\t')
code_to_name = {
"en": "English",
"fr": "French",
"de": "German",
"es": "Spanish",
}
with open('answer_reverse_mapping.json') as f:
answer_reverse_mapping = json.load(f)
st.set_page_config(
page_title="Multilingual VQA",
layout="wide",
initial_sidebar_state="collapsed",
page_icon="./misc/mvqa-logo.png",
)
st.title("Multilingual Visual Question Answering")
st.write("[Gunjan Chhablani](https://huggingface.co/gchhablani), [Bhavitvya Malik](https://huggingface.co/bhavitvyamalik)")
with st.beta_expander("Usage"):
st.markdown(read_markdown("usage.md"))
first_index = 20
# Init Session State
if state.image_file is None:
state.image_file = dummy_data.loc[first_index,'image_file']
state.question = dummy_data.loc[first_index,'question'].strip('- ')
state.answer_label = dummy_data.loc[first_index,'answer_label']
state.question_lang_id = dummy_data.loc[first_index, 'lang_id']
state.answer_lang_id = dummy_data.loc[first_index, 'lang_id']
image_path = os.path.join('images',state.image_file)
image = plt.imread(image_path)
state.image = image
col1, col2 = st.beta_columns([6,4])
if col2.button('Get a random example'):
sample = dummy_data.sample(1).reset_index()
state.image_file = sample.loc[0,'image_file']
state.question = sample.loc[0,'question'].strip('- ')
state.answer_label = sample.loc[0,'answer_label']
state.question_lang_id = sample.loc[0, 'lang_id']
state.answer_lang_id = sample.loc[0, 'lang_id']
image_path = os.path.join('images',state.image_file)
image = plt.imread(image_path)
state.image = image
col2.write("OR")
uploaded_file = col2.file_uploader('Upload your image', type=['png','jpg','jpeg'])
if uploaded_file is not None:
state.image_file = os.path.join('images/val2014',uploaded_file.name)
state.image = np.array(Image.open(uploaded_file))
transformed_image = get_transformed_image(state.image)
# Display Image
col1.image(state.image, use_column_width='always')
# Display Question
question = col2.text_input(label="Question", value=state.question)
col2.markdown(f"""**English Translation**: {question if state.question_lang_id == "en" else translate(question, 'en')}""")
question_inputs = get_text_attributes(question)
# Select Language
options = ['en', 'de', 'es', 'fr']
state.answer_lang_id = col2.selectbox('Answer Language', index=options.index(state.answer_lang_id), options=options, format_func = lambda x: code_to_name[x])
# Display Top-5 Predictions
with st.spinner('Loading model...'):
model = load_model(checkpoints[0])
with st.spinner('Predicting...'):
logits = predict(transformed_image, dict(question_inputs))
logits = softmax(logits)
labels, values = get_top_5_predictions(logits, answer_reverse_mapping)
translated_labels = translate_labels(labels, state.answer_lang_id)
fig = plotly_express_horizontal_bar_plot(values, translated_labels)
st.plotly_chart(fig, use_container_width = True)
st.write(read_markdown("abstract.md"))
st.write(read_markdown("caveats.md"))
st.write("# Methodology")
st.image("./misc/Multilingual-VQA.png", caption="Masked LM model for Image-text Pretraining.")
st.markdown(read_markdown("pretraining.md"))
st.markdown(read_markdown("finetuning.md"))
st.write(read_markdown("challenges.md"))
st.write(read_markdown("social_impact.md"))
st.write(read_markdown("references.md"))
st.write(read_markdown("checkpoints.md"))
st.write(read_markdown("acknowledgements.md"))