from .utils import ( get_text_attributes, get_top_5_predictions, get_transformed_image, plotly_express_horizontal_bar_plot, bert_tokenizer, ) import streamlit as st import numpy as np import pandas as pd import os import matplotlib.pyplot as plt from mtranslate import translate from .utils import read_markdown from .model.flax_clip_vision_bert.modeling_clip_vision_bert import ( FlaxCLIPVisionBertForMaskedLM, ) def softmax(logits): return np.exp(logits) / np.sum(np.exp(logits), axis=0) def app(state): mlm_state = state with st.beta_expander("Usage"): st.write(read_markdown("mlm_usage.md")) st.write(read_markdown("mlm_intro.md")) # @st.cache(persist=False) # TODO: Make this work with mlm_state. Currently not supported. def predict(transformed_image, caption_inputs): outputs = mlm_state.mlm_model(pixel_values=transformed_image, **caption_inputs) indices = np.where(caption_inputs["input_ids"] == bert_tokenizer.mask_token_id)[1][0] preds = outputs.logits[0][indices] scores = np.array(preds) return scores # @st.cache(persist=False) def load_model(ckpt): return FlaxCLIPVisionBertForMaskedLM.from_pretrained(ckpt) mlm_checkpoints = ["flax-community/clip-vision-bert-cc12m-70k"] dummy_data = pd.read_csv("cc12m_data/vqa_val.tsv", sep="\t") first_index = 15 # Init Session mlm_state if mlm_state.mlm_image_file is None: mlm_state.mlm_image_file = dummy_data.loc[first_index, "image_file"] caption = dummy_data.loc[first_index, "caption"].strip("- ") ids = bert_tokenizer.encode(caption) ids[np.random.randint(1, len(ids) - 1)] = bert_tokenizer.mask_token_id mlm_state.caption = bert_tokenizer.decode(ids[1:-1]) mlm_state.caption_lang_id = dummy_data.loc[first_index, "lang_id"] image_path = os.path.join("cc12m_data/resized_images_vqa", mlm_state.mlm_image_file) image = plt.imread(image_path) mlm_state.mlm_image = image if mlm_state.mlm_model is None: # Display Top-5 Predictions with st.spinner("Loading model..."): mlm_state.mlm_model = load_model(mlm_checkpoints[0]) if st.button( "Get a random example", help="Get a random example from the 100 `seeded` image-text pairs.", ): sample = dummy_data.sample(1).reset_index() mlm_state.mlm_image_file = sample.loc[0, "image_file"] caption = sample.loc[0, "caption"].strip("- ") ids = bert_tokenizer.encode(caption) ids[np.random.randint(1, len(ids) - 1)] = bert_tokenizer.mask_token_id mlm_state.caption = bert_tokenizer.decode(ids[1:-1]) mlm_state.caption_lang_id = sample.loc[0, "lang_id"] image_path = os.path.join("cc12m_data/resized_images_vqa", mlm_state.mlm_image_file) image = plt.imread(image_path) mlm_state.mlm_image = image transformed_image = get_transformed_image(mlm_state.mlm_image) new_col1, new_col2 = st.beta_columns([5, 5]) # Display Image new_col1.image(mlm_state.mlm_image, use_column_width="always") # Display caption new_col2.write("Write your text with exactly one [MASK] token.") caption = new_col2.text_input( label="Text", value=mlm_state.caption, help="Type your masked caption regarding the image above in one of the four languages.", ) new_col2.markdown( f"""**English Translation**: {caption if mlm_state.caption_lang_id == "en" else translate(caption, 'en')}""" ) caption_inputs = get_text_attributes(caption) # Display Top-5 Predictions with st.spinner("Predicting..."): scores = predict(transformed_image, dict(caption_inputs)) scores = softmax(scores) labels, values = get_top_5_predictions(scores) # newer_col1, newer_col2 = st.beta_columns([6,4]) fig = plotly_express_horizontal_bar_plot(values, labels) st.dataframe(pd.DataFrame({"Tokens":labels, "English Translation": list(map(lambda x: translate(x),labels))}).T) st.plotly_chart(fig, use_container_width=True)