arampacha commited on
Commit
0a35d3e
1 Parent(s): a9a0b5c

switch to streamlit

Browse files
Files changed (4) hide show
  1. README.md +1 -1
  2. app.py +63 -39
  3. gradio_app.py +107 -0
  4. requirements.txt +1 -2
README.md CHANGED
@@ -3,7 +3,7 @@ title: Code Clippy Problem Solver
3
  emoji: 💻
4
  colorFrom: blue
5
  colorTo: green
6
- sdk: gradio
7
  app_file: app.py
8
  pinned: false
9
  ---
 
3
  emoji: 💻
4
  colorFrom: blue
5
  colorTo: green
6
+ sdk: streamlit
7
  app_file: app.py
8
  pinned: false
9
  ---
app.py CHANGED
@@ -1,41 +1,33 @@
1
- import gradio as gr
2
-
3
- from rich.console import Console
4
- from rich.syntax import Syntax
5
  from transformers import AutoModelForCausalLM, AutoTokenizer
6
 
7
  # model_name = "flax-community/gpt-code-clippy-1.3B-apps-alldata"
8
  model_name = "flax-community/gpt-code-clippy-125M-apps-alldata"
9
- model = AutoModelForCausalLM.from_pretrained(model_name)
10
- tokenizer = AutoTokenizer.from_pretrained(model_name)
11
- tokenizer.pad_token = tokenizer.eos_token
12
 
13
- console = Console(record=True)
 
 
14
 
 
 
 
 
 
15
 
16
  def format_input(question, starter_code=""):
17
- answer_type = (
18
- "\nUse Call-Based format\n" if starter_code else "\nUse Standard Input format\n"
19
- )
20
  return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n"
21
 
22
 
23
- def format_outputs(text):
24
- formatted_text = Syntax(
25
- text, "python", line_numbers=True, indent_guides=True, word_wrap=True
26
- )
27
- console.print(formatted_text)
28
-
29
- return console.export_html(inline_styles=True)
30
-
31
-
32
- def generate_solution(question, starter_code="", temperature=1.0, num_beams=1):
33
  prompt = format_input(question, starter_code)
34
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids
35
  start = len(input_ids[0])
 
36
  output = model.generate(
37
  input_ids,
38
- max_length=start + 200,
39
  do_sample=True,
40
  top_p=0.95,
41
  pad_token_id=tokenizer.pad_token_id,
@@ -47,9 +39,7 @@ def generate_solution(question, starter_code="", temperature=1.0, num_beams=1):
47
  num_return_sequences=None,
48
  )
49
 
50
- return format_outputs(
51
- tokenizer.decode(output[0][start:], skip_special_tokens=True).strip()
52
- )
53
 
54
 
55
  _EXAMPLES = [
@@ -87,21 +77,55 @@ def greet(name, owner):
87
  0.8,
88
  ],
89
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
 
 
 
91
 
92
- inputs = [
93
- gr.inputs.Textbox(placeholder="Define a problem here...", lines=7),
94
- gr.inputs.Textbox(placeholder="Provide optional starter code...", lines=3),
95
- gr.inputs.Slider(0.5, 1.5, 0.1, default=0.8, label="Temperature"),
96
- gr.inputs.Slider(1, 4, 1, default=1, label="Beam size"),
97
- ]
 
 
 
 
 
98
 
99
- outputs = [gr.outputs.HTML(label="Solution")]
 
 
 
 
100
 
101
- gr.Interface(
102
- generate_solution,
103
- inputs=inputs,
104
- outputs=outputs,
105
- title="Code Clippy: Problem Solver",
106
- examples=_EXAMPLES,
107
- ).launch(share=False)
 
1
+ import streamlit as st
 
 
 
2
  from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
  # model_name = "flax-community/gpt-code-clippy-1.3B-apps-alldata"
5
  model_name = "flax-community/gpt-code-clippy-125M-apps-alldata"
 
 
 
6
 
7
+ @st.cache(allow_output_mutation=True)
8
+ def get_model():
9
+ return AutoModelForCausalLM.from_pretrained(model_name)
10
 
11
+ @st.cache
12
+ def get_tokenizer():
13
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
14
+ tokenizer.pad_token = tokenizer.eos_token
15
+ return tokenizer
16
 
17
  def format_input(question, starter_code=""):
18
+ answer_type = "\nUse Call-Based format\n" if starter_code else \
19
+ "\nUse Standard Input format\n"
 
20
  return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n"
21
 
22
 
23
+ def generate_solution(model, tokenizer, question, starter_code="", temperature=1.0, num_beams=1):
 
 
 
 
 
 
 
 
 
24
  prompt = format_input(question, starter_code)
25
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids
26
  start = len(input_ids[0])
27
+
28
  output = model.generate(
29
  input_ids,
30
+ max_length=start + 150,
31
  do_sample=True,
32
  top_p=0.95,
33
  pad_token_id=tokenizer.pad_token_id,
 
39
  num_return_sequences=None,
40
  )
41
 
42
+ return tokenizer.decode(output[0][start:], skip_special_tokens=True).strip()
 
 
43
 
44
 
45
  _EXAMPLES = [
 
77
  0.8,
78
  ],
79
  ]
80
+ def run():
81
+ st.set_page_config(
82
+ page_title="Code Clippy Problem Solver"
83
+ )
84
+ # sidebar
85
+ st.sidebar.title("Code Clippy")
86
+ st.sidebar.image(
87
+ "https://raw.githubusercontent.com/ncoop57/gpt-code-clippy/camera-ready/code_clippy_logo.jpg",
88
+ caption="(c) awesome Aimee Trevett",
89
+ )
90
+ st.sidebar.markdown("[Github](https://github.com/ncoop57/gpt-code-clippy)")
91
+
92
+ st.sidebar.markdown("### Controls:")
93
+
94
+ temperature = st.sidebar.slider(
95
+ "Temperature",
96
+ min_value=0.5,
97
+ max_value=1.5,
98
+ value=0.8,
99
+ step=0.1,
100
+ )
101
+ num_beams = st.sidebar.slider(
102
+ "Num beams",
103
+ min_value=1,
104
+ max_value=4,
105
+ step=1,
106
+ )
107
 
108
+ # main body
109
+ model = get_model()
110
+ tokenizer = get_tokenizer()
111
 
112
+ question = st.text_input(
113
+ "Problem: ",
114
+ value="A function that can greet user by name. Given a name it should say hello to user.",
115
+ help="Text description of the coding problem to be solved",
116
+ )
117
+ starter_code = st.text_input(
118
+ "Started code: ",
119
+ value="def greet(name):",
120
+ help="Optional starter code"
121
+ )
122
+ submit_button = st.button("Solve")
123
 
124
+ if submit_button:
125
+
126
+ generate_solution(model, tokenizer, question, starter_code, temperature, num_beams)
127
+ st.code(tmp, language="python")
128
+
129
 
130
+ if __name__=="__main__":
131
+ run()
 
 
 
 
 
gradio_app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from rich.console import Console
4
+ from rich.syntax import Syntax
5
+ from transformers import AutoModelForCausalLM, AutoTokenizer
6
+
7
+ # model_name = "flax-community/gpt-code-clippy-1.3B-apps-alldata"
8
+ model_name = "flax-community/gpt-code-clippy-125M-apps-alldata"
9
+ model = AutoModelForCausalLM.from_pretrained(model_name)
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ tokenizer.pad_token = tokenizer.eos_token
12
+
13
+ console = Console(record=True)
14
+
15
+
16
+ def format_input(question, starter_code=""):
17
+ answer_type = (
18
+ "\nUse Call-Based format\n" if starter_code else "\nUse Standard Input format\n"
19
+ )
20
+ return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n"
21
+
22
+
23
+ def format_outputs(text):
24
+ formatted_text = Syntax(
25
+ text, "python", line_numbers=True, indent_guides=True, word_wrap=True
26
+ )
27
+ console.print(formatted_text)
28
+
29
+ return console.export_html(inline_styles=True)
30
+
31
+
32
+ def generate_solution(question, starter_code="", temperature=1.0, num_beams=1):
33
+ prompt = format_input(question, starter_code)
34
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
35
+ start = len(input_ids[0])
36
+ output = model.generate(
37
+ input_ids,
38
+ max_length=start + 200,
39
+ do_sample=True,
40
+ top_p=0.95,
41
+ pad_token_id=tokenizer.pad_token_id,
42
+ early_stopping=True,
43
+ temperature=temperature,
44
+ num_beams=int(num_beams),
45
+ no_repeat_ngram_size=None,
46
+ repetition_penalty=None,
47
+ num_return_sequences=None,
48
+ )
49
+
50
+ return format_outputs(
51
+ tokenizer.decode(output[0][start:], skip_special_tokens=True).strip()
52
+ )
53
+
54
+
55
+ _EXAMPLES = [
56
+ [
57
+ """
58
+ Given a 2D list of size `m * n`. Your task is to find the sum of minimum value in each row.
59
+ For Example:
60
+ ```python
61
+ [
62
+ [1, 2, 3, 4, 5], # minimum value of row is 1
63
+ [5, 6, 7, 8, 9], # minimum value of row is 5
64
+ [20, 21, 34, 56, 100] # minimum value of row is 20
65
+ ]
66
+ ```
67
+ So, the function should return `26` because sum of minimums is as `1 + 5 + 20 = 26`
68
+ """,
69
+ "",
70
+ 0.8,
71
+ ],
72
+ [
73
+ """
74
+ # Personalized greeting
75
+
76
+ Create a function that gives a personalized greeting. This function takes two parameters: `name` and `owner`.
77
+ """,
78
+ """
79
+ Use conditionals to return the proper message:
80
+
81
+ case| return
82
+ --- | ---
83
+ name equals owner | 'Hello boss'
84
+ otherwise | 'Hello guest'
85
+ def greet(name, owner):
86
+ """,
87
+ 0.8,
88
+ ],
89
+ ]
90
+
91
+
92
+ inputs = [
93
+ gr.inputs.Textbox(placeholder="Define a problem here...", lines=7),
94
+ gr.inputs.Textbox(placeholder="Provide optional starter code...", lines=3),
95
+ gr.inputs.Slider(0.5, 1.5, 0.1, default=0.8, label="Temperature"),
96
+ gr.inputs.Slider(1, 4, 1, default=1, label="Beam size"),
97
+ ]
98
+
99
+ outputs = [gr.outputs.HTML(label="Solution")]
100
+
101
+ gr.Interface(
102
+ generate_solution,
103
+ inputs=inputs,
104
+ outputs=outputs,
105
+ title="Code Clippy: Problem Solver",
106
+ examples=_EXAMPLES,
107
+ ).launch(share=False)
requirements.txt CHANGED
@@ -1,3 +1,2 @@
1
  torch
2
- transformers
3
- rich
 
1
  torch
2
+ transformers