File size: 10,891 Bytes
85c1b8e
0fe3e72
d209547
85c1b8e
 
d209547
ed93c8a
d209547
 
85c1b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901ff72
0fe3e72
 
 
ed93c8a
85c1b8e
 
c6ebb14
85c1b8e
 
5ee6e60
 
 
 
 
ed93c8a
901ff72
 
 
 
 
ed93c8a
 
 
85c1b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a96f4dc
85c1b8e
 
 
 
 
 
 
 
 
 
 
 
 
0fe3e72
 
 
 
 
85c1b8e
 
 
 
 
 
0fe3e72
85c1b8e
 
0fe3e72
85c1b8e
 
 
 
 
 
 
 
0fe3e72
 
 
 
 
a96f4dc
0fe3e72
 
85c1b8e
 
 
 
 
 
 
0fe3e72
85c1b8e
 
 
 
0fe3e72
85c1b8e
 
 
 
 
 
 
 
 
f254058
85c1b8e
 
 
 
 
 
8b72ed8
85c1b8e
f254058
85c1b8e
 
 
 
 
 
 
f254058
85c1b8e
f254058
85c1b8e
 
 
 
 
 
ed93c8a
2d07559
 
ed93c8a
85c1b8e
 
ddcbc6a
 
ed93c8a
ddcbc6a
 
 
 
f254058
 
ddcbc6a
 
ed93c8a
 
 
f254058
ed93c8a
 
 
 
85c1b8e
 
 
 
 
 
 
 
 
b7c7458
85c1b8e
 
 
b7c7458
85c1b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fe3e72
85c1b8e
 
 
 
 
 
 
 
 
a96f4dc
85c1b8e
 
 
 
 
 
a96f4dc
85c1b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from dataclasses import dataclass, field
from functools import partial

import jax
import jax.numpy as jnp
import numpy as np
from braceexpand import braceexpand
from datasets import Dataset, load_dataset

from .text import TextNormalizer


@dataclass
class Dataset:
    dataset_repo_or_path: str
    train_file: str = None
    validation_file: str = None
    streaming: bool = True
    use_auth_token: bool = False
    text_column: str = "caption"
    encoding_column: str = "encoding"
    max_train_samples: int = None
    max_eval_samples: int = None
    preprocessing_num_workers: int = None
    overwrite_cache: bool = False
    do_train: bool = False
    do_eval: bool = True
    seed_dataset: int = None
    shard_by_host: bool = False
    train_dataset: Dataset = field(init=False)
    eval_dataset: Dataset = field(init=False)
    rng_dataset: jnp.ndarray = field(init=False)
    multi_hosts: bool = field(init=False)

    def __post_init__(self):
        self.multi_hosts = jax.process_count() > 1
        # define data_files
        if self.train_file is not None or self.validation_file is not None:
            # accept braceexpand notation
            for k in ["train_file", "validation_file"]:
                f = getattr(self, k)
                if isinstance(f, str):
                    setattr(self, k, list(braceexpand(f)))
            # for list of files, split training data shards by host
            if (
                isinstance(self.train_file, list)
                and self.multi_hosts
                and self.shard_by_host
            ):
                self.train_file = self.train_file[
                    jax.process_index() :: jax.process_count()
                ]
            data_files = {
                "train": self.train_file,
                "validation": self.validation_file,
            }
        else:
            data_files = None

        # load dataset
        dataset = load_dataset(
            self.dataset_repo_or_path,
            data_files=data_files,
            streaming=self.streaming,
            use_auth_token=self.use_auth_token,
        )
        if self.do_train:
            if "train" not in dataset:
                raise ValueError("Training requires a training dataset")
            self.train_dataset = dataset["train"]
            if self.max_train_samples is not None:
                self.train_dataset = (
                    self.train_dataset.take(self.max_train_samples)
                    if self.streaming
                    else self.train_dataset.select(range(self.max_train_samples))
                )
        if self.do_eval:
            if "validation" not in dataset:
                raise ValueError("Evaluating requires a validation dataset")
            self.eval_dataset = dataset["validation"]
            if self.max_eval_samples is not None:
                self.eval_dataset = (
                    self.eval_dataset.take(self.max_eval_samples)
                    if self.streaming
                    else self.eval_dataset.select(range(self.max_eval_samples))
                )

    def preprocess(self, tokenizer, decoder_start_token_id, normalize_text, max_length):
        if self.streaming:
            # we need to shuffle early in streaming mode
            if hasattr(self, "train_dataset"):
                self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset)
        else:
            # prepare rng for later shuffling
            if self.seed_dataset is None:
                self.seed_dataset = np.random.get_state()[1][0]
            self.rng_dataset = jax.random.PRNGKey(self.seed_dataset)

        # normalize text
        if normalize_text:
            text_normalizer = TextNormalizer()
            partial_normalize_function = partial(
                normalize_function,
                text_column=self.text_column,
                text_normalizer=text_normalizer,
            )
            for ds in ["train_dataset", "eval_dataset"]:
                if hasattr(self, ds):
                    setattr(
                        self,
                        ds,
                        (
                            getattr(self, ds).map(partial_normalize_function)
                            if self.streaming
                            else getattr(self, ds).map(
                                partial_normalize_function,
                                num_proc=self.preprocessing_num_workers,
                                load_from_cache_file=not self.overwrite_cache,
                                desc="Normalizing datasets",
                            )
                        ),
                    )

        # preprocess
        partial_preprocess_function = partial(
            preprocess_function,
            tokenizer=tokenizer,
            text_column=self.text_column,
            encoding_column=self.encoding_column,
            max_length=max_length,
            decoder_start_token_id=decoder_start_token_id,
        )
        for ds in ["train_dataset", "eval_dataset"]:
            if hasattr(self, ds):
                setattr(
                    self,
                    ds,
                    (
                        getattr(self, ds).map(
                            partial_preprocess_function,
                            batched=True,
                        )
                        if self.streaming
                        else getattr(self, ds).map(
                            partial_preprocess_function,
                            batched=True,
                            remove_columns=getattr(ds, "column_names"),
                            num_proc=self.preprocessing_num_workers,
                            load_from_cache_file=not self.overwrite_cache,
                            desc="Preprocessing datasets",
                        )
                    ),
                )

    def dataloader(self, split, batch_size, epoch=None):
        def _dataloader_datasets_non_streaming(
            dataset: Dataset,
            rng: jax.random.PRNGKey = None,
        ):
            """
            Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
            Shuffle batches if rng is set.
            """
            steps_per_epoch = len(dataset) // batch_size

            if rng is not None:
                batch_idx = jax.random.permutation(rng, len(dataset))
            else:
                batch_idx = jnp.arange(len(dataset))

            batch_idx = batch_idx[
                : steps_per_epoch * batch_size
            ]  # Skip incomplete batch.
            batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))

            for idx in batch_idx:
                batch = dataset[idx]
                batch = {k: jnp.array(v) for k, v in batch.items()}
                yield batch

        def _dataloader_datasets_streaming(
            dataset: Dataset,
            epoch: int,
        ):
            keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"]
            batch = {k: [] for k in keys}
            first_loop = True  # stop after one loop in some cases
            while (self.multi_hosts and split == "train") or first_loop:
                # in multi-host, we run forever (no epoch) as hosts need to stop
                # at the same time and training data may not be split equally
                # For validation data we put the entire set on each host as we could lose
                # too many samples on pods
                if epoch is not None:
                    assert split == "train"
                    # reshuffle training data at each epoch
                    dataset.set_epoch(epoch)
                    epoch += 1
                for item in dataset:
                    for k, v in item.items():
                        batch[k].append(v)
                    if len(batch[keys[0]]) == batch_size:
                        batch = {k: jnp.array(v) for k, v in batch.items()}
                        yield batch
                        batch = {k: [] for k in keys}
                first_loop = False

        if split == "train":
            ds = self.train_dataset
        elif split == "eval":
            ds = self.eval_dataset
        else:
            raise ValueError(f'split must be "train" or "eval", got {split}')

        if self.streaming:
            return _dataloader_datasets_streaming(ds, epoch)
        else:
            if split == "train":
                self.rng_dataset, input_rng = jax.random.split(self.rng_dataset)
            return _dataloader_datasets_non_streaming(ds, input_rng)

    @property
    def length(self):
        len_train_dataset, len_eval_dataset = None, None
        if self.streaming:
            # we don't know the length, let's just assume max_samples if defined
            if self.max_train_samples is not None:
                len_train_dataset = self.max_train_samples
            if self.max_eval_samples is not None:
                len_eval_dataset = self.max_eval_samples
        else:
            len_train_dataset = (
                len(self.train_dataset) if hasattr(self, "train_dataset") else None
            )
            len_eval_dataset = (
                len(self.eval_dataset) if hasattr(self, "eval_dataset") else None
            )
        return len_train_dataset, len_eval_dataset


def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = np.zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1]
    shifted_input_ids[:, 0] = decoder_start_token_id
    return shifted_input_ids


def normalize_function(example, text_column, text_normalizer):
    example[text_column] = text_normalizer(example[text_column])
    return example


def preprocess_function(
    examples,
    tokenizer,
    text_column,
    encoding_column,
    max_length,
    decoder_start_token_id,
):
    inputs = examples[text_column]
    # Setting padding="max_length" as we need fixed length inputs for jitted functions
    model_inputs = tokenizer(
        inputs,
        max_length=max_length,
        padding="max_length",
        truncation=True,
        return_tensors="np",
    )

    # set up targets
    # Note: labels correspond to our target indices
    # decoder input ids are the same but shifted to the right with bos at the beginning (and without last token)
    labels = examples[encoding_column]
    labels = np.asarray(labels)

    # We need the labels, in addition to the decoder_input_ids, for the compute_loss function
    model_inputs["labels"] = labels

    # In our case, this prepends the bos token and removes the last one
    decoder_input_ids = shift_tokens_right(labels, decoder_start_token_id)
    model_inputs["decoder_input_ids"] = decoder_input_ids

    return model_inputs