File size: 9,035 Bytes
6197b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a11892f
6197b2f
a11892f
 
6197b2f
 
 
 
 
 
 
 
a11892f
6197b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a11892f
6197b2f
 
 
 
 
a11892f
 
 
 
 
6197b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a11892f
 
6197b2f
 
a11892f
 
 
 
 
6197b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a11892f
 
 
6197b2f
 
 
a11892f
 
 
6197b2f
 
 
a265819
6197b2f
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BART model configuration """
import warnings

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)


class DalleBartConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a `DalleBartModel`. It is used to
    instantiate a DalleBart model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the BART `facebook/bart-large
    <https://huggingface.co/facebook/bart-large>`__ architecture.

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.


    Args:
        encoder_vocab_size (:obj:`int`, `optional`, defaults to 50265):
            Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
            :obj:`inputs_ids` passed when calling :class:`~transformers.BartModel` or
            :class:`~transformers.TFBartModel`.
        d_model (:obj:`int`, `optional`, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (:obj:`int`, `optional`, defaults to 12):
            Number of encoder layers.
        decoder_layers (:obj:`int`, `optional`, defaults to 12):
            Number of decoder layers.
        encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string,
            :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
        dropout (:obj:`float`, `optional`, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for classifier.
        max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        init_std (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            The LayerDrop probability for the encoder. See the `LayerDrop paper <see
            https://arxiv.org/abs/1909.11556>`__ for more details.
        decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            The LayerDrop probability for the decoder. See the `LayerDrop paper <see
            https://arxiv.org/abs/1909.11556>`__ for more details.
        gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
            If True, use gradient checkpointing to save memory at the expense of slower backward pass.
        scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Scale embeddings by diving by sqrt(d_model).
        use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        num_labels: (:obj:`int`, `optional`, defaults to 3):
            The number of labels to use in :class:`~transformers.BartForSequenceClassification`.
        forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
            The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
            :obj:`eos_token_id`.
    """
    model_type = "dallebart"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}

    def __init__(
        self,
        normalize_text=False,
        encoder_vocab_size=50264,
        image_vocab_size=16384,  # encoded image token space
        image_length=256,  # number of encoded tokens
        max_text_length=64,  # max number of text tokens
        encoder_layers=12,
        encoder_ffn_dim=4096,
        encoder_attention_heads=16,
        decoder_layers=12,
        decoder_ffn_dim=4096,
        decoder_attention_heads=16,
        encoder_layerdrop=0.0,
        decoder_layerdrop=0.0,
        activation_function="gelu",
        d_model=1024,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        classifier_dropout=0.0,
        scale_embedding=False,
        gradient_checkpointing=False,
        use_cache=True,
        num_labels=3,
        is_encoder_decoder=True,
        forced_eos_token_id=None,
        tie_word_embeddings=False, # don't tie for scaling reasons and due to different modalities and sizes
        **kwargs,
    ):
        self.normalize_text = normalize_text
        self.encoder_vocab_size = encoder_vocab_size
        self.decoder_vocab_size = image_vocab_size
        self.image_length = image_length
        self.max_text_length = max_text_length
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.classifier_dropout = classifier_dropout
        self.use_cache = use_cache
        self.num_hidden_layers = encoder_layers
        self.gradient_checkpointing = gradient_checkpointing
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True
        self.decoder_start_token_id = image_vocab_size,  # BOS appended to vocab
        self.min_length = image_length + 1
        self.max_length = image_length + 1

        super().__init__(
            num_labels=num_labels,
            pad_token_id=image_vocab_size + 1,  # needed to avoid errors during generation (converted to jnp.array)
            bos_token_id=image_vocab_size + 1,  # set to unreachable values
            eos_token_id=image_vocab_size + 1,
            is_encoder_decoder=is_encoder_decoder,
            decoder_start_token_id=decoder_start_token_id,
            forced_eos_token_id=forced_eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

        # ensure backward compatibility for BART CNN models
        if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
            self.forced_bos_token_id = self.bos_token_id
            warnings.warn(
                f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
                "The config can simply be saved and uploaded again to be fixed."
            )