Spaces:
Running
Running
Merge branch 'main' into chore-mv
Browse files
{examples → dev/notebooks/vqgan}/JAX_VQGAN_f16_16384_Reconstruction.ipynb
RENAMED
File without changes
|
examples/vqgan-jax-encoding-howto.py
DELETED
@@ -1,124 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# VQGAN-JAX - Encoding HowTo
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
# For data loading
|
9 |
-
import torch
|
10 |
-
import torchvision.transforms.functional as TF
|
11 |
-
from torch.utils.data import Dataset, DataLoader
|
12 |
-
from torchvision.datasets.folder import default_loader
|
13 |
-
from torchvision.transforms import InterpolationMode
|
14 |
-
|
15 |
-
# For data saving
|
16 |
-
from pathlib import Path
|
17 |
-
import pandas as pd
|
18 |
-
from tqdm import tqdm
|
19 |
-
|
20 |
-
import jax
|
21 |
-
from jax import pmap
|
22 |
-
|
23 |
-
from vqgan_jax.modeling_flax_vqgan import VQModel
|
24 |
-
|
25 |
-
## Params and arguments
|
26 |
-
|
27 |
-
image_list = '/sddata/dalle-mini/CC12M/10k.tsv' # List of paths containing images to encode
|
28 |
-
output_tsv = 'output.tsv' # Encoded results
|
29 |
-
batch_size = 64
|
30 |
-
num_workers = 4 # TPU v3-8s have 96 cores, so feel free to increase this number when necessary
|
31 |
-
|
32 |
-
# Load model
|
33 |
-
model = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
34 |
-
|
35 |
-
## Data Loading.
|
36 |
-
|
37 |
-
# Simple torch Dataset to load images from paths.
|
38 |
-
# You can use your own pipeline instead.
|
39 |
-
class ImageDataset(Dataset):
|
40 |
-
def __init__(self, image_list_path: str, image_size: int, max_items=None):
|
41 |
-
"""
|
42 |
-
:param image_list_path: Path to a file containing a list of all images. We assume absolute paths for now.
|
43 |
-
:param image_size: Image size. Source images will be resized and center-cropped.
|
44 |
-
:max_items: Limit dataset size for debugging
|
45 |
-
"""
|
46 |
-
self.image_list = pd.read_csv(image_list_path, sep='\t', header=None)
|
47 |
-
if max_items is not None: self.image_list = self.image_list[:max_items]
|
48 |
-
self.image_size = image_size
|
49 |
-
|
50 |
-
def __len__(self):
|
51 |
-
return len(self.image_list)
|
52 |
-
|
53 |
-
def _get_raw_image(self, i):
|
54 |
-
image_path = Path(self.image_list.iloc[i][0])
|
55 |
-
return default_loader(image_path)
|
56 |
-
|
57 |
-
def resize_image(self, image):
|
58 |
-
s = min(image.size)
|
59 |
-
r = self.image_size / s
|
60 |
-
s = (round(r * image.size[1]), round(r * image.size[0]))
|
61 |
-
image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)
|
62 |
-
image = TF.center_crop(image, output_size = 2 * [self.image_size])
|
63 |
-
image = np.expand_dims(np.array(image), axis=0)
|
64 |
-
return image
|
65 |
-
|
66 |
-
def __getitem__(self, i):
|
67 |
-
image = self._get_raw_image(i)
|
68 |
-
return self.resize_image(image)
|
69 |
-
|
70 |
-
## Encoding
|
71 |
-
|
72 |
-
# Encoding function to be parallelized with `pmap`
|
73 |
-
# Note: images have to be square
|
74 |
-
def encode(model, batch):
|
75 |
-
_, indices = model.encode(batch)
|
76 |
-
return indices
|
77 |
-
|
78 |
-
# Alternative: create a batch with num_tpus*batch_size and use `shard` to distribute.
|
79 |
-
def superbatch_generator(dataloader, num_tpus):
|
80 |
-
iter_loader = iter(dataloader)
|
81 |
-
for batch in iter_loader:
|
82 |
-
superbatch = [batch.squeeze(1)]
|
83 |
-
try:
|
84 |
-
for _ in range(num_tpus-1):
|
85 |
-
batch = next(iter_loader)
|
86 |
-
if batch is None:
|
87 |
-
break
|
88 |
-
# Skip incomplete last batch
|
89 |
-
if batch.shape[0] == dataloader.batch_size:
|
90 |
-
superbatch.append(batch.squeeze(1))
|
91 |
-
except StopIteration:
|
92 |
-
pass
|
93 |
-
superbatch = torch.stack(superbatch, axis=0)
|
94 |
-
yield superbatch
|
95 |
-
|
96 |
-
def encode_dataset(dataset, batch_size=32):
|
97 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
|
98 |
-
superbatches = superbatch_generator(dataloader, num_tpus=jax.device_count())
|
99 |
-
|
100 |
-
num_tpus = jax.device_count()
|
101 |
-
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
|
102 |
-
superbatches = superbatch_generator(dataloader, num_tpus=num_tpus)
|
103 |
-
|
104 |
-
p_encoder = pmap(lambda batch: encode(model, batch))
|
105 |
-
|
106 |
-
# We save each superbatch to avoid reallocation of buffers as we process them.
|
107 |
-
# We keep the file open to prevent excessive file seeks.
|
108 |
-
with open(output_tsv, "w") as file:
|
109 |
-
iterations = len(dataset) // (batch_size * num_tpus)
|
110 |
-
for n in tqdm(range(iterations)):
|
111 |
-
superbatch = next(superbatches)
|
112 |
-
encoded = p_encoder(superbatch.numpy())
|
113 |
-
encoded = encoded.reshape(-1, encoded.shape[-1])
|
114 |
-
|
115 |
-
# Extract paths from the dataset, and save paths and encodings (as string) to disk
|
116 |
-
start_index = n * batch_size * num_tpus
|
117 |
-
end_index = (n+1) * batch_size * num_tpus
|
118 |
-
paths = dataset.image_list[start_index:end_index][0].values
|
119 |
-
encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))
|
120 |
-
batch_df = pd.DataFrame.from_dict({"image_file": paths, "encoding": encoded_as_string})
|
121 |
-
batch_df.to_csv(file, sep='\t', header=(n==0), index=None)
|
122 |
-
|
123 |
-
dataset = ImageDataset(image_list, image_size=256)
|
124 |
-
encoded_dataset = encode_dataset(dataset, batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|