boris commited on
Commit
0df810d
·
1 Parent(s): 9bf9397

fix: fixes training script

Browse files
Files changed (1) hide show
  1. dev/seq2seq/run_seq2seq_flax.py +34 -21
dev/seq2seq/run_seq2seq_flax.py CHANGED
@@ -46,7 +46,7 @@ from transformers import (
46
  HfArgumentParser,
47
  TrainingArguments,
48
  )
49
- from transformers.models.bart.modeling_flax_bart import *
50
 
51
  import wandb
52
 
@@ -398,7 +398,7 @@ def main():
398
  config.normalize_text = model_args.normalize_text
399
 
400
  # Create a custom model and initialize it randomly
401
- model = CustomFlaxBartForConditionalGeneration.from_config(
402
  config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
403
  )
404
 
@@ -566,13 +566,16 @@ def main():
566
  steps_per_epoch = (
567
  len_train_dataset // train_batch_size if len_train_dataset is not None else None
568
  )
 
 
 
569
 
570
  # Create learning rate schedule
571
  learning_rate_fn = create_learning_rate_fn(
572
  training_args.warmup_steps,
573
  training_args.learning_rate,
574
  data_args.use_decay,
575
- steps_per_epoch * num_epochs,
576
  )
577
 
578
  # We use Optax's "masking" functionality to not apply weight decay
@@ -602,8 +605,8 @@ def main():
602
  # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
603
  optimizer = optax.adafactor(
604
  learning_rate=learning_rate_fn,
605
- weight_decay_rate=training_args.weight_decay,
606
- weight_decay_mask=decay_mask_fn,
607
  )
608
  else:
609
  optimizer = optax.adamw(
@@ -721,7 +724,11 @@ def main():
721
  eval_loader = data_loader_streaming(eval_dataset, eval_batch_size)
722
  else:
723
  eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
724
- eval_steps = len_eval_dataset // eval_batch_size
 
 
 
 
725
  for batch in tqdm(
726
  eval_loader,
727
  desc="Evaluating...",
@@ -738,7 +745,7 @@ def main():
738
  eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
739
 
740
  # log metrics
741
- wandb_log(eval_metrics, step=get_metrics(state.step), prefix="eval")
742
 
743
  # Print metrics and update progress bar
744
  desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
@@ -763,14 +770,15 @@ def main():
763
  opt_state = unreplicate(state.opt_state)
764
  with (Path(training_args.output_dir) / "opt_state.msgpack").open("wb") as f:
765
  f.write(to_bytes(opt_state))
 
 
 
 
766
  with (Path(training_args.output_dir) / "training_state.json").open(
767
  "w"
768
  ) as f:
769
  json.dump(
770
- {
771
- k: get_metrics(state[k])
772
- for k in ["step", "epoch", "train_time", "train_samples"]
773
- },
774
  f,
775
  )
776
 
@@ -780,10 +788,7 @@ def main():
780
  c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
781
  c.cleanup(wandb.util.from_human_size("10GB"))
782
 
783
- metadata = {
784
- k: get_metrics(state[k])
785
- for k in ["step", "epoch", "train_time", "train_samples"]
786
- }
787
  if eval_metrics is not None:
788
  metadata["eval"] = eval_metrics
789
  artifact = wandb.Artifact(
@@ -819,7 +824,7 @@ def main():
819
  training_args.output_dir,
820
  params=params,
821
  push_to_hub=training_args.push_to_hub,
822
- commit_message=f"Saving weights and logs at step {get_metrics(state.step)+1}",
823
  temp_dir=True, # avoid issues with being in a repository
824
  )
825
 
@@ -830,7 +835,7 @@ def main():
830
  for epoch in epochs:
831
  state.replace(epoch=jax_utils.replicate(epoch))
832
  # ======================== Training ================================
833
- wandb_log({"train/epoch": epoch}, step=get_metrics(state.step))
834
 
835
  # Generate an epoch by shuffling sampling indices from the train dataset
836
  if data_args.streaming:
@@ -856,12 +861,20 @@ def main():
856
  last_time = new_time
857
 
858
  # train step
859
- state, train_metric = p_train_step(state, batch, delta_time)
860
- step = get_metrics(state.step)
 
 
861
 
862
  if step % data_args.log_interval == 0 and jax.process_index() == 0:
863
  # log metrics
864
- wandb_log(get_metrics(train_metric), step=step, prefix="train")
 
 
 
 
 
 
865
 
866
  eval_metrics = None
867
  if training_args.eval_steps and step % training_args.eval_steps == 0:
@@ -872,7 +885,7 @@ def main():
872
 
873
  # log final train metrics
874
  if train_metric is not None:
875
- train_metric = get_metrics(train_metric)
876
  wandb_log(train_metric, step=step, prefix="train")
877
 
878
  epochs.write(
 
46
  HfArgumentParser,
47
  TrainingArguments,
48
  )
49
+ from transformers.models.bart.modeling_flax_bart import BartConfig
50
 
51
  import wandb
52
 
 
398
  config.normalize_text = model_args.normalize_text
399
 
400
  # Create a custom model and initialize it randomly
401
+ model = CustomFlaxBartForConditionalGeneration(
402
  config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
403
  )
404
 
 
566
  steps_per_epoch = (
567
  len_train_dataset // train_batch_size if len_train_dataset is not None else None
568
  )
569
+ num_train_steps = (
570
+ steps_per_epoch * num_epochs if steps_per_epoch is not None else None
571
+ )
572
 
573
  # Create learning rate schedule
574
  learning_rate_fn = create_learning_rate_fn(
575
  training_args.warmup_steps,
576
  training_args.learning_rate,
577
  data_args.use_decay,
578
+ num_train_steps,
579
  )
580
 
581
  # We use Optax's "masking" functionality to not apply weight decay
 
605
  # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
606
  optimizer = optax.adafactor(
607
  learning_rate=learning_rate_fn,
608
+ # weight_decay_rate=training_args.weight_decay,
609
+ # weight_decay_mask=decay_mask_fn,
610
  )
611
  else:
612
  optimizer = optax.adamw(
 
724
  eval_loader = data_loader_streaming(eval_dataset, eval_batch_size)
725
  else:
726
  eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
727
+ eval_steps = (
728
+ len_eval_dataset // eval_batch_size
729
+ if len_eval_dataset is not None
730
+ else None
731
+ )
732
  for batch in tqdm(
733
  eval_loader,
734
  desc="Evaluating...",
 
745
  eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
746
 
747
  # log metrics
748
+ wandb_log(eval_metrics, step=unreplicate(state.step), prefix="eval")
749
 
750
  # Print metrics and update progress bar
751
  desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
 
770
  opt_state = unreplicate(state.opt_state)
771
  with (Path(training_args.output_dir) / "opt_state.msgpack").open("wb") as f:
772
  f.write(to_bytes(opt_state))
773
+ state_dict = {
774
+ k: unreplicate(getattr(state, k))
775
+ for k in ["step", "epoch", "train_time", "train_samples"]
776
+ }
777
  with (Path(training_args.output_dir) / "training_state.json").open(
778
  "w"
779
  ) as f:
780
  json.dump(
781
+ state_dict,
 
 
 
782
  f,
783
  )
784
 
 
788
  c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
789
  c.cleanup(wandb.util.from_human_size("10GB"))
790
 
791
+ metadata = dict(state_dict)
 
 
 
792
  if eval_metrics is not None:
793
  metadata["eval"] = eval_metrics
794
  artifact = wandb.Artifact(
 
824
  training_args.output_dir,
825
  params=params,
826
  push_to_hub=training_args.push_to_hub,
827
+ commit_message=f"Saving weights and logs at step {unreplicate(state.step)+1}",
828
  temp_dir=True, # avoid issues with being in a repository
829
  )
830
 
 
835
  for epoch in epochs:
836
  state.replace(epoch=jax_utils.replicate(epoch))
837
  # ======================== Training ================================
838
+ wandb_log({"train/epoch": epoch}, step=unreplicate(state.step))
839
 
840
  # Generate an epoch by shuffling sampling indices from the train dataset
841
  if data_args.streaming:
 
861
  last_time = new_time
862
 
863
  # train step
864
+ state, train_metric = p_train_step(
865
+ state, batch, jax_utils.replicate(delta_time)
866
+ )
867
+ step = unreplicate(state.step)
868
 
869
  if step % data_args.log_interval == 0 and jax.process_index() == 0:
870
  # log metrics
871
+ wandb_log(unreplicate(train_metric), step=step, prefix="train")
872
+ # log state parameters
873
+ state_dict = {
874
+ k.split("_")[-1]: unreplicate(getattr(state, k))
875
+ for k in ["epoch", "train_time", "train_samples"]
876
+ }
877
+ wandb_log(state_dict, step=step, prefix="train")
878
 
879
  eval_metrics = None
880
  if training_args.eval_steps and step % training_args.eval_steps == 0:
 
885
 
886
  # log final train metrics
887
  if train_metric is not None:
888
+ train_metric = unreplicate(train_metric)
889
  wandb_log(train_metric, step=step, prefix="train")
890
 
891
  epochs.write(