Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
·
16f038a
1
Parent(s):
150ed18
* Notebook that processes CC12M and creates a version with encodings.
Browse filesThe VQGAN in use was created by Boris Dayma:
https://huggingface.co/flax-community/vqgan_f16_16384. It was trained on
GPU using the Taming Transformers code and then converted to JAX.
The output file contains the following fields:
- `image_file`: relative path to the image file. To be preprended with
the root path where images reside.
- `caption`: the untransformed text caption.
- `encoding`: the encoding indices produced by the VQGAN, as a string
representation of a list with 256 integers.
encoding/vqgan-jax-encoding-with-captions.ipynb
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "d0b72877",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# vqgan-jax-encoding-with-captions"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"id": "875c82b3",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"Notebook based on [vqgan-jax-reconstruction](https://colab.research.google.com/drive/1mdXXsMbV6K_LTvCh3IImRsFIWcKU5m1w?usp=sharing) by @surajpatil.\n",
|
17 |
+
"\n",
|
18 |
+
"We process a `tsv` file with `image_file` and `caption` fields, and add a `vqgan_indices` column with indices extracted from a VQGAN-JAX model."
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 1,
|
24 |
+
"id": "3b59489e",
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"import io\n",
|
29 |
+
"\n",
|
30 |
+
"import requests\n",
|
31 |
+
"from PIL import Image\n",
|
32 |
+
"import numpy as np\n",
|
33 |
+
"from tqdm import tqdm\n",
|
34 |
+
"\n",
|
35 |
+
"import torch\n",
|
36 |
+
"import torchvision.transforms as T\n",
|
37 |
+
"import torchvision.transforms.functional as TF\n",
|
38 |
+
"from torchvision.transforms import InterpolationMode\n",
|
39 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
40 |
+
"\n",
|
41 |
+
"import jax\n",
|
42 |
+
"from jax import pmap"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "markdown",
|
47 |
+
"id": "511c3b9e",
|
48 |
+
"metadata": {},
|
49 |
+
"source": [
|
50 |
+
"## VQGAN-JAX model"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "markdown",
|
55 |
+
"id": "bb408f6c",
|
56 |
+
"metadata": {},
|
57 |
+
"source": [
|
58 |
+
"`dalle_mini` is a local package that contains the VQGAN-JAX model and other utilities."
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 2,
|
64 |
+
"id": "2ca50dc7",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "markdown",
|
73 |
+
"id": "7b60da9a",
|
74 |
+
"metadata": {},
|
75 |
+
"source": [
|
76 |
+
"We'll use a VQGAN trained by using Taming Transformers and converted to a JAX model."
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 3,
|
82 |
+
"id": "29ce8b15",
|
83 |
+
"metadata": {},
|
84 |
+
"outputs": [
|
85 |
+
{
|
86 |
+
"data": {
|
87 |
+
"application/vnd.jupyter.widget-view+json": {
|
88 |
+
"model_id": "db406bdfc5d5428eaeae1631a04989dd",
|
89 |
+
"version_major": 2,
|
90 |
+
"version_minor": 0
|
91 |
+
},
|
92 |
+
"text/plain": [
|
93 |
+
"Downloading: 0%| | 0.00/433 [00:00<?, ?B/s]"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
"metadata": {},
|
97 |
+
"output_type": "display_data"
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"data": {
|
101 |
+
"application/vnd.jupyter.widget-view+json": {
|
102 |
+
"model_id": "3e37f07fba6d48fca70313ae1fa8cc32",
|
103 |
+
"version_major": 2,
|
104 |
+
"version_minor": 0
|
105 |
+
},
|
106 |
+
"text/plain": [
|
107 |
+
"Downloading: 0%| | 0.00/304M [00:00<?, ?B/s]"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
"metadata": {},
|
111 |
+
"output_type": "display_data"
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"name": "stderr",
|
115 |
+
"output_type": "stream",
|
116 |
+
"text": [
|
117 |
+
"INFO:absl:Starting the local TPU driver.\n",
|
118 |
+
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
|
119 |
+
"INFO:absl:Unable to initialize backend 'gpu': Not found: Could not find registered platform with name: \"cuda\". Available platform names are: Interpreter Host TPU\n"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"name": "stdout",
|
124 |
+
"output_type": "stream",
|
125 |
+
"text": [
|
126 |
+
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
127 |
+
]
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "markdown",
|
136 |
+
"id": "c7c4c1e6",
|
137 |
+
"metadata": {},
|
138 |
+
"source": [
|
139 |
+
"## Dataset"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "markdown",
|
144 |
+
"id": "7014a7ce",
|
145 |
+
"metadata": {},
|
146 |
+
"source": [
|
147 |
+
"We use Luke Melas-Kyriazi's `dataset.py` which reads image paths and captions from a tsv file that contains both. We only need the images for encoding."
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": 4,
|
153 |
+
"id": "85832702",
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [],
|
156 |
+
"source": [
|
157 |
+
"from dalle_mini.dataset import *"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": 5,
|
163 |
+
"id": "81b19eca",
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [],
|
166 |
+
"source": [
|
167 |
+
"cc12m_images = '/data/CC12M/images'\n",
|
168 |
+
"cc12m_list = '/data/CC12M/images-list-clean.tsv'\n",
|
169 |
+
"# cc12m_list = '/data/CC12M/images-10000.tsv'\n",
|
170 |
+
"cc12m_output = '/data/CC12M/images-encoded.tsv'"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 6,
|
176 |
+
"id": "fecc9a00",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"image_size = 256\n",
|
181 |
+
"def image_transform(image):\n",
|
182 |
+
" s = min(image.size)\n",
|
183 |
+
" r = image_size / s\n",
|
184 |
+
" s = (round(r * image.size[1]), round(r * image.size[0]))\n",
|
185 |
+
" image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)\n",
|
186 |
+
" image = TF.center_crop(image, output_size = 2 * [image_size])\n",
|
187 |
+
" image = torch.unsqueeze(T.ToTensor()(image), 0)\n",
|
188 |
+
" image = image.permute(0, 2, 3, 1).numpy()\n",
|
189 |
+
" return image"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 7,
|
195 |
+
"id": "4ce2211f",
|
196 |
+
"metadata": {},
|
197 |
+
"outputs": [],
|
198 |
+
"source": [
|
199 |
+
"dataset = CaptionDataset(\n",
|
200 |
+
" images_root=cc12m_images,\n",
|
201 |
+
" captions_path=cc12m_list,\n",
|
202 |
+
" image_transform=image_transform,\n",
|
203 |
+
" image_transform_type='torchvision',\n",
|
204 |
+
" include_captions=False\n",
|
205 |
+
")"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "code",
|
210 |
+
"execution_count": 8,
|
211 |
+
"id": "cc922704",
|
212 |
+
"metadata": {},
|
213 |
+
"outputs": [
|
214 |
+
{
|
215 |
+
"data": {
|
216 |
+
"text/plain": [
|
217 |
+
"8592141"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
"execution_count": 8,
|
221 |
+
"metadata": {},
|
222 |
+
"output_type": "execute_result"
|
223 |
+
}
|
224 |
+
],
|
225 |
+
"source": [
|
226 |
+
"len(dataset)"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "markdown",
|
231 |
+
"id": "62ad01c3",
|
232 |
+
"metadata": {},
|
233 |
+
"source": [
|
234 |
+
"## Encoding"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"execution_count": 9,
|
240 |
+
"id": "88f36d0b",
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"def encode(model, batch):\n",
|
245 |
+
"# print(\"jitting encode function\")\n",
|
246 |
+
" _, indices = model.encode(batch)\n",
|
247 |
+
" return indices"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 10,
|
253 |
+
"id": "1f35f0cb",
|
254 |
+
"metadata": {},
|
255 |
+
"outputs": [],
|
256 |
+
"source": [
|
257 |
+
"def superbatch_generator(dataloader, num_tpus):\n",
|
258 |
+
" iter_loader = iter(dataloader)\n",
|
259 |
+
" for batch in iter_loader:\n",
|
260 |
+
" superbatch = [batch.squeeze(1)]\n",
|
261 |
+
" try:\n",
|
262 |
+
" for b in range(num_tpus-1):\n",
|
263 |
+
" batch = next(iter_loader)\n",
|
264 |
+
" if batch is None:\n",
|
265 |
+
" break\n",
|
266 |
+
" # Skip incomplete last batch\n",
|
267 |
+
" if batch.shape[0] == dataloader.batch_size:\n",
|
268 |
+
" superbatch.append(batch.squeeze(1))\n",
|
269 |
+
" except StopIteration:\n",
|
270 |
+
" pass\n",
|
271 |
+
" superbatch = torch.stack(superbatch, axis=0)\n",
|
272 |
+
" yield superbatch"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": 11,
|
278 |
+
"id": "2210705b",
|
279 |
+
"metadata": {},
|
280 |
+
"outputs": [],
|
281 |
+
"source": [
|
282 |
+
"import os\n",
|
283 |
+
"\n",
|
284 |
+
"def encode_captioned_dataset(dataset, output_tsv, batch_size=32, num_workers=16):\n",
|
285 |
+
" if os.path.isfile(output_tsv):\n",
|
286 |
+
" print(f\"Destination file {output_tsv} already exists, please move away.\")\n",
|
287 |
+
" return\n",
|
288 |
+
" \n",
|
289 |
+
" num_tpus = 8 \n",
|
290 |
+
" dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)\n",
|
291 |
+
" superbatches = superbatch_generator(dataloader, num_tpus=num_tpus)\n",
|
292 |
+
" \n",
|
293 |
+
" p_encoder = pmap(lambda batch: encode(model, batch))\n",
|
294 |
+
"\n",
|
295 |
+
" # We save each superbatch to avoid reallocation of buffers as we process them.\n",
|
296 |
+
" # We keep the file open to prevent excessive file seeks.\n",
|
297 |
+
" with open(output_tsv, \"w\") as file:\n",
|
298 |
+
" iterations = len(dataset) // (batch_size * num_tpus)\n",
|
299 |
+
" for n in tqdm(range(iterations)):\n",
|
300 |
+
" superbatch = next(superbatches)\n",
|
301 |
+
" encoded = p_encoder(superbatch.numpy())\n",
|
302 |
+
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
|
303 |
+
"\n",
|
304 |
+
" # Extract fields from the dataset internal `captions` property, and save to disk\n",
|
305 |
+
" start_index = n * batch_size * num_tpus\n",
|
306 |
+
" end_index = (n+1) * batch_size * num_tpus\n",
|
307 |
+
" paths = dataset.captions[\"image_file\"][start_index:end_index].values\n",
|
308 |
+
" captions = dataset.captions[\"caption\"][start_index:end_index].values\n",
|
309 |
+
" encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
|
310 |
+
" batch_df = pd.DataFrame.from_dict({\"image_file\": paths, \"caption\": captions, \"encoding\": encoded_as_string})\n",
|
311 |
+
" batch_df.to_csv(file, sep='\\t', header=(n==0), index=None)\n",
|
312 |
+
" "
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "code",
|
317 |
+
"execution_count": null,
|
318 |
+
"id": "7704863d",
|
319 |
+
"metadata": {},
|
320 |
+
"outputs": [
|
321 |
+
{
|
322 |
+
"name": "stderr",
|
323 |
+
"output_type": "stream",
|
324 |
+
"text": [
|
325 |
+
" 4%|██▋ | 621/16781 [07:09<3:02:46, 1.47it/s]"
|
326 |
+
]
|
327 |
+
}
|
328 |
+
],
|
329 |
+
"source": [
|
330 |
+
"encode_captioned_dataset(dataset, cc12m_output, batch_size=64, num_workers=16)"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "markdown",
|
335 |
+
"id": "8953dd84",
|
336 |
+
"metadata": {},
|
337 |
+
"source": [
|
338 |
+
"----"
|
339 |
+
]
|
340 |
+
}
|
341 |
+
],
|
342 |
+
"metadata": {
|
343 |
+
"kernelspec": {
|
344 |
+
"display_name": "Python 3 (ipykernel)",
|
345 |
+
"language": "python",
|
346 |
+
"name": "python3"
|
347 |
+
},
|
348 |
+
"language_info": {
|
349 |
+
"codemirror_mode": {
|
350 |
+
"name": "ipython",
|
351 |
+
"version": 3
|
352 |
+
},
|
353 |
+
"file_extension": ".py",
|
354 |
+
"mimetype": "text/x-python",
|
355 |
+
"name": "python",
|
356 |
+
"nbconvert_exporter": "python",
|
357 |
+
"pygments_lexer": "ipython3",
|
358 |
+
"version": "3.8.10"
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"nbformat": 4,
|
362 |
+
"nbformat_minor": 5
|
363 |
+
}
|