Spaces:
Running
Running
Merge pull request #115 from borisdayma/feat-shampoo
Browse files- README.md +11 -0
- dalle_mini/data.py +44 -16
- dalle_mini/model.py +0 -64
- dalle_mini/model/__init__.py +2 -0
- dalle_mini/model/configuration.py +121 -0
- dalle_mini/model/modeling.py +563 -0
- dalle_mini/model/partitions.py +68 -0
- setup.cfg +1 -0
- tools/inference/inference_pipeline.ipynb +0 -0
- tools/train/config/medium/config.json +33 -0
- tools/train/config/mega/config.json +33 -0
- tools/train/config/micro/config.json +33 -0
- tools/train/config/mini/config.json +33 -0
- tools/train/distributed_shampoo.py +1826 -0
- tools/train/sweep.yaml +25 -30
- tools/train/train.py +193 -157
README.md
CHANGED
@@ -154,3 +154,14 @@ year = {2021}
|
|
154 |
primaryClass={cs.CV}
|
155 |
}
|
156 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
primaryClass={cs.CV}
|
155 |
}
|
156 |
```
|
157 |
+
|
158 |
+
```
|
159 |
+
@misc{anil2021scalable,
|
160 |
+
title={Scalable Second Order Optimization for Deep Learning},
|
161 |
+
author={Rohan Anil and Vineet Gupta and Tomer Koren and Kevin Regan and Yoram Singer},
|
162 |
+
year={2021},
|
163 |
+
eprint={2002.09018},
|
164 |
+
archivePrefix={arXiv},
|
165 |
+
primaryClass={cs.LG}
|
166 |
+
}
|
167 |
+
```
|
dalle_mini/data.py
CHANGED
@@ -4,6 +4,7 @@ from functools import partial
|
|
4 |
import jax
|
5 |
import jax.numpy as jnp
|
6 |
import numpy as np
|
|
|
7 |
from datasets import Dataset, load_dataset
|
8 |
from flax.training.common_utils import shard
|
9 |
|
@@ -15,12 +16,10 @@ class Dataset:
|
|
15 |
dataset_repo_or_path: str
|
16 |
train_file: str = None
|
17 |
validation_file: str = None
|
18 |
-
dataset_type: str = "dataset"
|
19 |
streaming: bool = True
|
20 |
use_auth_token: bool = False
|
21 |
text_column: str = "caption"
|
22 |
encoding_column: str = "encoding"
|
23 |
-
max_source_length: int = 128
|
24 |
max_train_samples: int = None
|
25 |
max_eval_samples: int = None
|
26 |
preprocessing_num_workers: int = None
|
@@ -28,13 +27,30 @@ class Dataset:
|
|
28 |
do_train: bool = False
|
29 |
do_eval: bool = True
|
30 |
seed_dataset: int = None
|
|
|
31 |
train_dataset: Dataset = field(init=False)
|
32 |
eval_dataset: Dataset = field(init=False)
|
33 |
rng_dataset: jnp.ndarray = field(init=False)
|
|
|
34 |
|
35 |
def __post_init__(self):
|
|
|
36 |
# define data_files
|
37 |
if self.train_file is not None or self.validation_file is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
data_files = {
|
39 |
"train": self.train_file,
|
40 |
"validation": self.validation_file,
|
@@ -70,7 +86,7 @@ class Dataset:
|
|
70 |
else self.eval_dataset.select(range(self.max_eval_samples))
|
71 |
)
|
72 |
|
73 |
-
def preprocess(self, tokenizer, decoder_start_token_id, normalize_text):
|
74 |
if self.streaming:
|
75 |
# we need to shuffle early in streaming mode
|
76 |
if hasattr(self, "train_dataset"):
|
@@ -112,7 +128,7 @@ class Dataset:
|
|
112 |
tokenizer=tokenizer,
|
113 |
text_column=self.text_column,
|
114 |
encoding_column=self.encoding_column,
|
115 |
-
|
116 |
decoder_start_token_id=decoder_start_token_id,
|
117 |
)
|
118 |
for ds in ["train_dataset", "eval_dataset"]:
|
@@ -165,17 +181,29 @@ class Dataset:
|
|
165 |
batch = shard(batch)
|
166 |
yield batch
|
167 |
|
168 |
-
def _dataloader_datasets_streaming(
|
|
|
|
|
|
|
169 |
keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"]
|
170 |
batch = {k: [] for k in keys}
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
if split == "train":
|
181 |
ds = self.train_dataset
|
@@ -187,7 +215,7 @@ class Dataset:
|
|
187 |
if self.streaming:
|
188 |
if split == "train":
|
189 |
ds.set_epoch(epoch)
|
190 |
-
return _dataloader_datasets_streaming(ds, batch_size)
|
191 |
else:
|
192 |
if split == "train":
|
193 |
self.rng_dataset, input_rng = jax.random.split(self.rng_dataset)
|
@@ -232,14 +260,14 @@ def preprocess_function(
|
|
232 |
tokenizer,
|
233 |
text_column,
|
234 |
encoding_column,
|
235 |
-
|
236 |
decoder_start_token_id,
|
237 |
):
|
238 |
inputs = examples[text_column]
|
239 |
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
240 |
model_inputs = tokenizer(
|
241 |
inputs,
|
242 |
-
max_length=
|
243 |
padding="max_length",
|
244 |
truncation=True,
|
245 |
return_tensors="np",
|
|
|
4 |
import jax
|
5 |
import jax.numpy as jnp
|
6 |
import numpy as np
|
7 |
+
from braceexpand import braceexpand
|
8 |
from datasets import Dataset, load_dataset
|
9 |
from flax.training.common_utils import shard
|
10 |
|
|
|
16 |
dataset_repo_or_path: str
|
17 |
train_file: str = None
|
18 |
validation_file: str = None
|
|
|
19 |
streaming: bool = True
|
20 |
use_auth_token: bool = False
|
21 |
text_column: str = "caption"
|
22 |
encoding_column: str = "encoding"
|
|
|
23 |
max_train_samples: int = None
|
24 |
max_eval_samples: int = None
|
25 |
preprocessing_num_workers: int = None
|
|
|
27 |
do_train: bool = False
|
28 |
do_eval: bool = True
|
29 |
seed_dataset: int = None
|
30 |
+
shard_by_host: bool = False
|
31 |
train_dataset: Dataset = field(init=False)
|
32 |
eval_dataset: Dataset = field(init=False)
|
33 |
rng_dataset: jnp.ndarray = field(init=False)
|
34 |
+
multi_hosts: bool = field(init=False)
|
35 |
|
36 |
def __post_init__(self):
|
37 |
+
self.multi_hosts = jax.process_count() > 1
|
38 |
# define data_files
|
39 |
if self.train_file is not None or self.validation_file is not None:
|
40 |
+
# accept braceexpand notation
|
41 |
+
for k in ["train_file", "validation_file"]:
|
42 |
+
f = getattr(self, k)
|
43 |
+
if isinstance(f, str):
|
44 |
+
setattr(self, k, list(braceexpand(f)))
|
45 |
+
# for list of files, split training data shards by host
|
46 |
+
if (
|
47 |
+
isinstance(self.train_file, list)
|
48 |
+
and self.multi_hosts
|
49 |
+
and self.shard_by_host
|
50 |
+
):
|
51 |
+
self.train_file = self.train_file[
|
52 |
+
jax.process_index() :: jax.process_count()
|
53 |
+
]
|
54 |
data_files = {
|
55 |
"train": self.train_file,
|
56 |
"validation": self.validation_file,
|
|
|
86 |
else self.eval_dataset.select(range(self.max_eval_samples))
|
87 |
)
|
88 |
|
89 |
+
def preprocess(self, tokenizer, decoder_start_token_id, normalize_text, max_length):
|
90 |
if self.streaming:
|
91 |
# we need to shuffle early in streaming mode
|
92 |
if hasattr(self, "train_dataset"):
|
|
|
128 |
tokenizer=tokenizer,
|
129 |
text_column=self.text_column,
|
130 |
encoding_column=self.encoding_column,
|
131 |
+
max_length=max_length,
|
132 |
decoder_start_token_id=decoder_start_token_id,
|
133 |
)
|
134 |
for ds in ["train_dataset", "eval_dataset"]:
|
|
|
181 |
batch = shard(batch)
|
182 |
yield batch
|
183 |
|
184 |
+
def _dataloader_datasets_streaming(
|
185 |
+
dataset: Dataset, batch_size: int, epoch: int
|
186 |
+
):
|
187 |
+
# epoch is only use for multi-host
|
188 |
keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"]
|
189 |
batch = {k: [] for k in keys}
|
190 |
+
first_loop = True
|
191 |
+
while self.multi_hosts or first_loop:
|
192 |
+
# in multi-host, we run forever (no epoch) as hosts need to stop
|
193 |
+
# at the same time and we don't know how much data is on each host
|
194 |
+
if not first_loop:
|
195 |
+
# multi-host setting, we reshuffle shards
|
196 |
+
epoch += 1
|
197 |
+
dataset.set_epoch(epoch)
|
198 |
+
for item in dataset:
|
199 |
+
for k, v in item.items():
|
200 |
+
batch[k].append(v)
|
201 |
+
if len(batch[keys[0]]) == batch_size:
|
202 |
+
batch = {k: jnp.array(v) for k, v in batch.items()}
|
203 |
+
batch = shard(batch)
|
204 |
+
yield batch
|
205 |
+
batch = {k: [] for k in keys}
|
206 |
+
first_loop = False
|
207 |
|
208 |
if split == "train":
|
209 |
ds = self.train_dataset
|
|
|
215 |
if self.streaming:
|
216 |
if split == "train":
|
217 |
ds.set_epoch(epoch)
|
218 |
+
return _dataloader_datasets_streaming(ds, batch_size, epoch)
|
219 |
else:
|
220 |
if split == "train":
|
221 |
self.rng_dataset, input_rng = jax.random.split(self.rng_dataset)
|
|
|
260 |
tokenizer,
|
261 |
text_column,
|
262 |
encoding_column,
|
263 |
+
max_length,
|
264 |
decoder_start_token_id,
|
265 |
):
|
266 |
inputs = examples[text_column]
|
267 |
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
268 |
model_inputs = tokenizer(
|
269 |
inputs,
|
270 |
+
max_length=max_length,
|
271 |
padding="max_length",
|
272 |
truncation=True,
|
273 |
return_tensors="np",
|
dalle_mini/model.py
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
import flax.linen as nn
|
2 |
-
import jax
|
3 |
-
from transformers import BartConfig
|
4 |
-
from transformers.models.bart.modeling_flax_bart import (
|
5 |
-
FlaxBartDecoder,
|
6 |
-
FlaxBartEncoder,
|
7 |
-
FlaxBartForConditionalGeneration,
|
8 |
-
FlaxBartForConditionalGenerationModule,
|
9 |
-
FlaxBartModule,
|
10 |
-
)
|
11 |
-
|
12 |
-
|
13 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
14 |
-
def setup(self):
|
15 |
-
# we keep shared to easily load pre-trained weights
|
16 |
-
self.shared = nn.Embed(
|
17 |
-
self.config.vocab_size,
|
18 |
-
self.config.d_model,
|
19 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
20 |
-
)
|
21 |
-
# a separate embedding is used for the decoder
|
22 |
-
self.decoder_embed = nn.Embed(
|
23 |
-
self.config.image_vocab_size + 1,
|
24 |
-
self.config.d_model,
|
25 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
26 |
-
)
|
27 |
-
self.encoder = FlaxBartEncoder(
|
28 |
-
self.config, dtype=self.dtype, embed_tokens=self.shared
|
29 |
-
)
|
30 |
-
|
31 |
-
# the decoder has a different config
|
32 |
-
# TODO: should not be needed once we have custom config/module
|
33 |
-
decoder_config = BartConfig(self.config.to_dict())
|
34 |
-
decoder_config.max_position_embeddings = (
|
35 |
-
self.config.image_length + 1 # image tokens + BOS
|
36 |
-
)
|
37 |
-
decoder_config.vocab_size = self.config.image_vocab_size + 1
|
38 |
-
self.decoder = FlaxBartDecoder(
|
39 |
-
decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed
|
40 |
-
)
|
41 |
-
|
42 |
-
|
43 |
-
class CustomFlaxBartForConditionalGenerationModule(
|
44 |
-
FlaxBartForConditionalGenerationModule
|
45 |
-
):
|
46 |
-
def setup(self):
|
47 |
-
# set default config
|
48 |
-
self.config.normalize_text = getattr(self.config, "normalize_text", False)
|
49 |
-
self.config.image_length = getattr(self.config, "image_length", 256)
|
50 |
-
self.config.image_vocab_size = getattr(self.config, "image_vocab_size", 16384)
|
51 |
-
|
52 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
53 |
-
self.lm_head = nn.Dense(
|
54 |
-
self.config.image_vocab_size + 1, # encoded image token space + 1 for bos
|
55 |
-
use_bias=False,
|
56 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
57 |
-
)
|
58 |
-
self.final_logits_bias = self.param(
|
59 |
-
"final_logits_bias", self.bias_init, (1, self.config.image_vocab_size + 1)
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
64 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dalle_mini/model/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .configuration import DalleBartConfig
|
2 |
+
from .modeling import DalleBart
|
dalle_mini/model/configuration.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DalleBart model configuration """
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class DalleBartConfig(PretrainedConfig):
|
25 |
+
model_type = "dallebart"
|
26 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
27 |
+
attribute_map = {
|
28 |
+
"num_attention_heads": "encoder_attention_heads",
|
29 |
+
"hidden_size": "d_model",
|
30 |
+
}
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
normalize_text=False,
|
35 |
+
encoder_vocab_size=50264,
|
36 |
+
image_vocab_size=16384, # encoded image token space
|
37 |
+
image_length=256, # number of encoded tokens
|
38 |
+
max_text_length=64, # max number of text tokens
|
39 |
+
encoder_layers=12,
|
40 |
+
encoder_ffn_dim=4096,
|
41 |
+
encoder_attention_heads=16,
|
42 |
+
decoder_layers=12,
|
43 |
+
decoder_ffn_dim=4096,
|
44 |
+
decoder_attention_heads=16,
|
45 |
+
encoder_layerdrop=0.0,
|
46 |
+
decoder_layerdrop=0.0,
|
47 |
+
activation_function="gelu",
|
48 |
+
d_model=1024,
|
49 |
+
dropout=0.1,
|
50 |
+
attention_dropout=0.0,
|
51 |
+
activation_dropout=0.0,
|
52 |
+
init_std=0.02,
|
53 |
+
classifier_dropout=0.0,
|
54 |
+
scale_embedding=False,
|
55 |
+
gradient_checkpointing=False,
|
56 |
+
use_cache=True,
|
57 |
+
is_encoder_decoder=True,
|
58 |
+
forced_eos_token_id=None,
|
59 |
+
tie_word_embeddings=False, # different modalities and sizes
|
60 |
+
**kwargs,
|
61 |
+
):
|
62 |
+
self.normalize_text = normalize_text
|
63 |
+
self.encoder_vocab_size = encoder_vocab_size
|
64 |
+
self.image_vocab_size = image_vocab_size
|
65 |
+
self.image_length = image_length
|
66 |
+
self.max_text_length = max_text_length
|
67 |
+
self.d_model = d_model
|
68 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
69 |
+
self.encoder_layers = encoder_layers
|
70 |
+
self.encoder_attention_heads = encoder_attention_heads
|
71 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
72 |
+
self.decoder_layers = decoder_layers
|
73 |
+
self.decoder_attention_heads = decoder_attention_heads
|
74 |
+
self.dropout = dropout
|
75 |
+
self.attention_dropout = attention_dropout
|
76 |
+
self.activation_dropout = activation_dropout
|
77 |
+
self.activation_function = activation_function
|
78 |
+
self.init_std = init_std
|
79 |
+
self.encoder_layerdrop = encoder_layerdrop
|
80 |
+
self.decoder_layerdrop = decoder_layerdrop
|
81 |
+
self.classifier_dropout = classifier_dropout
|
82 |
+
self.use_cache = use_cache
|
83 |
+
self.gradient_checkpointing = gradient_checkpointing
|
84 |
+
self.scale_embedding = (
|
85 |
+
scale_embedding # scale factor will be sqrt(d_model) if True
|
86 |
+
)
|
87 |
+
|
88 |
+
# remove inferred keys to prevent errors when loading config (passed as kwargs)
|
89 |
+
for k in [
|
90 |
+
"pad_token_id",
|
91 |
+
"bos_token_id",
|
92 |
+
"eos_token_id",
|
93 |
+
"decoder_start_token_id",
|
94 |
+
"min_length",
|
95 |
+
"max_length",
|
96 |
+
]:
|
97 |
+
kwargs.pop(k, None)
|
98 |
+
|
99 |
+
super().__init__(
|
100 |
+
pad_token_id=image_vocab_size
|
101 |
+
+ 1, # needed to avoid errors during generation (converted to jnp.array)
|
102 |
+
bos_token_id=image_vocab_size + 1, # set to unreachable values
|
103 |
+
eos_token_id=image_vocab_size + 1,
|
104 |
+
is_encoder_decoder=is_encoder_decoder,
|
105 |
+
decoder_start_token_id=image_vocab_size, # BOS appended to vocab
|
106 |
+
forced_eos_token_id=forced_eos_token_id,
|
107 |
+
tie_word_embeddings=tie_word_embeddings,
|
108 |
+
min_length=image_length + 1,
|
109 |
+
max_length=image_length + 1,
|
110 |
+
**kwargs,
|
111 |
+
)
|
112 |
+
|
113 |
+
# ensure backward compatibility for BART CNN models
|
114 |
+
if self.forced_bos_token_id is None and kwargs.get(
|
115 |
+
"force_bos_token_to_be_generated", False
|
116 |
+
):
|
117 |
+
self.forced_bos_token_id = self.bos_token_id
|
118 |
+
warnings.warn(
|
119 |
+
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
|
120 |
+
"The config can simply be saved and uploaded again to be fixed."
|
121 |
+
)
|
dalle_mini/model/modeling.py
ADDED
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and the DalleBart team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DalleBart model. """
|
16 |
+
|
17 |
+
import math
|
18 |
+
from functools import partial
|
19 |
+
from typing import Optional, Tuple
|
20 |
+
|
21 |
+
import flax.linen as nn
|
22 |
+
import jax
|
23 |
+
import jax.numpy as jnp
|
24 |
+
from flax.core.frozen_dict import unfreeze
|
25 |
+
from flax.linen import make_causal_mask
|
26 |
+
from flax.traverse_util import flatten_dict
|
27 |
+
from jax.random import PRNGKey
|
28 |
+
from transformers.modeling_flax_outputs import (
|
29 |
+
FlaxCausalLMOutputWithCrossAttentions,
|
30 |
+
FlaxSeq2SeqLMOutput,
|
31 |
+
)
|
32 |
+
from transformers.modeling_flax_utils import ACT2FN
|
33 |
+
from transformers.models.bart.modeling_flax_bart import (
|
34 |
+
FlaxBartAttention,
|
35 |
+
FlaxBartDecoder,
|
36 |
+
FlaxBartDecoderLayer,
|
37 |
+
FlaxBartDecoderLayerCollection,
|
38 |
+
FlaxBartEncoder,
|
39 |
+
FlaxBartEncoderLayer,
|
40 |
+
FlaxBartEncoderLayerCollection,
|
41 |
+
FlaxBartForConditionalGeneration,
|
42 |
+
FlaxBartForConditionalGenerationModule,
|
43 |
+
FlaxBartModule,
|
44 |
+
FlaxBartPreTrainedModel,
|
45 |
+
)
|
46 |
+
from transformers.utils import logging
|
47 |
+
|
48 |
+
from .configuration import DalleBartConfig
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
|
53 |
+
class FlaxBartAttention(FlaxBartAttention):
|
54 |
+
"""
|
55 |
+
Edits:
|
56 |
+
- causal mask is used only in decoder and considers image_length + 1 (for BOS)
|
57 |
+
"""
|
58 |
+
|
59 |
+
def setup(self) -> None:
|
60 |
+
self.head_dim = self.embed_dim // self.num_heads
|
61 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
62 |
+
raise ValueError(
|
63 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
64 |
+
f" and `num_heads`: {self.num_heads})."
|
65 |
+
)
|
66 |
+
|
67 |
+
dense = partial(
|
68 |
+
nn.Dense,
|
69 |
+
self.embed_dim,
|
70 |
+
use_bias=self.bias,
|
71 |
+
dtype=self.dtype,
|
72 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
73 |
+
)
|
74 |
+
|
75 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
76 |
+
self.out_proj = dense()
|
77 |
+
|
78 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
79 |
+
|
80 |
+
if self.causal:
|
81 |
+
# used only in decoder
|
82 |
+
self.causal_mask = make_causal_mask(
|
83 |
+
jnp.ones((1, self.config.image_length + 1), dtype="bool"), dtype="bool"
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
class FlaxBartEncoderLayer(FlaxBartEncoderLayer):
|
88 |
+
"""
|
89 |
+
Edits:
|
90 |
+
- no bias
|
91 |
+
- use custom FlaxBartAttention
|
92 |
+
"""
|
93 |
+
|
94 |
+
def setup(self) -> None:
|
95 |
+
self.embed_dim = self.config.d_model
|
96 |
+
self.self_attn = FlaxBartAttention(
|
97 |
+
config=self.config,
|
98 |
+
embed_dim=self.embed_dim,
|
99 |
+
num_heads=self.config.encoder_attention_heads,
|
100 |
+
dropout=self.config.attention_dropout,
|
101 |
+
bias=False,
|
102 |
+
dtype=self.dtype,
|
103 |
+
)
|
104 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
105 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
106 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
107 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
108 |
+
self.fc1 = nn.Dense(
|
109 |
+
self.config.encoder_ffn_dim,
|
110 |
+
dtype=self.dtype,
|
111 |
+
use_bias=False,
|
112 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
113 |
+
)
|
114 |
+
self.fc2 = nn.Dense(
|
115 |
+
self.embed_dim,
|
116 |
+
dtype=self.dtype,
|
117 |
+
use_bias=False,
|
118 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
119 |
+
)
|
120 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
121 |
+
|
122 |
+
|
123 |
+
class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection):
|
124 |
+
"""
|
125 |
+
Edits:
|
126 |
+
- use custom FlaxBartEncoderLayer
|
127 |
+
- allow Gradient Checkpointing (nn.remat)
|
128 |
+
"""
|
129 |
+
|
130 |
+
def setup(self):
|
131 |
+
layer_module = (
|
132 |
+
nn.remat(FlaxBartEncoderLayer)
|
133 |
+
if self.config.gradient_checkpointing
|
134 |
+
else FlaxBartEncoderLayer
|
135 |
+
)
|
136 |
+
self.layers = [
|
137 |
+
layer_module(self.config, name=str(i), dtype=self.dtype)
|
138 |
+
for i in range(self.config.encoder_layers)
|
139 |
+
]
|
140 |
+
self.layerdrop = self.config.encoder_layerdrop
|
141 |
+
|
142 |
+
|
143 |
+
class FlaxBartDecoderLayer(FlaxBartDecoderLayer):
|
144 |
+
"""
|
145 |
+
Edits:
|
146 |
+
- no bias
|
147 |
+
- uses custom FlaxBartAttention
|
148 |
+
"""
|
149 |
+
|
150 |
+
def setup(self) -> None:
|
151 |
+
self.embed_dim = self.config.d_model
|
152 |
+
self.self_attn = FlaxBartAttention(
|
153 |
+
config=self.config,
|
154 |
+
embed_dim=self.embed_dim,
|
155 |
+
num_heads=self.config.decoder_attention_heads,
|
156 |
+
dropout=self.config.attention_dropout,
|
157 |
+
causal=True,
|
158 |
+
bias=False,
|
159 |
+
dtype=self.dtype,
|
160 |
+
)
|
161 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
162 |
+
self.activation_fn = ACT2FN[self.config.activation_function]
|
163 |
+
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
164 |
+
|
165 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
166 |
+
self.encoder_attn = FlaxBartAttention(
|
167 |
+
config=self.config,
|
168 |
+
embed_dim=self.embed_dim,
|
169 |
+
num_heads=self.config.decoder_attention_heads,
|
170 |
+
dropout=self.config.attention_dropout,
|
171 |
+
bias=False,
|
172 |
+
dtype=self.dtype,
|
173 |
+
)
|
174 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
175 |
+
self.fc1 = nn.Dense(
|
176 |
+
self.config.encoder_ffn_dim,
|
177 |
+
dtype=self.dtype,
|
178 |
+
use_bias=False,
|
179 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
180 |
+
)
|
181 |
+
self.fc2 = nn.Dense(
|
182 |
+
self.embed_dim,
|
183 |
+
dtype=self.dtype,
|
184 |
+
use_bias=False,
|
185 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
186 |
+
)
|
187 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
188 |
+
|
189 |
+
|
190 |
+
class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection):
|
191 |
+
"""
|
192 |
+
Edits:
|
193 |
+
- use custom FlaxBartDecoderLayer
|
194 |
+
- allow Gradient Checkpointing (nn.remat)
|
195 |
+
"""
|
196 |
+
|
197 |
+
def setup(self):
|
198 |
+
layer_module = (
|
199 |
+
nn.remat(FlaxBartDecoderLayer)
|
200 |
+
if self.config.gradient_checkpointing
|
201 |
+
else FlaxBartDecoderLayer
|
202 |
+
)
|
203 |
+
self.layers = [
|
204 |
+
layer_module(self.config, name=str(i), dtype=self.dtype)
|
205 |
+
for i in range(self.config.decoder_layers)
|
206 |
+
]
|
207 |
+
self.layerdrop = self.config.decoder_layerdrop
|
208 |
+
|
209 |
+
|
210 |
+
class FlaxBartEncoder(FlaxBartEncoder):
|
211 |
+
"""
|
212 |
+
Edits:
|
213 |
+
- offset set to 0 (no padding token)
|
214 |
+
- use max_text_length instead of max_position_embeddings
|
215 |
+
- use custom FlaxBartEncoderLayerCollection
|
216 |
+
- embed_tokens cannot be None (issue at compile time)
|
217 |
+
"""
|
218 |
+
|
219 |
+
def setup(self):
|
220 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
221 |
+
|
222 |
+
embed_dim = self.config.d_model
|
223 |
+
self.padding_idx = self.config.pad_token_id
|
224 |
+
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
225 |
+
|
226 |
+
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
227 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
228 |
+
self.offset = 0
|
229 |
+
self.embed_positions = nn.Embed(
|
230 |
+
self.config.max_text_length + self.offset,
|
231 |
+
embed_dim,
|
232 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
233 |
+
)
|
234 |
+
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
|
235 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
236 |
+
|
237 |
+
|
238 |
+
class FlaxBartDecoder(FlaxBartDecoder):
|
239 |
+
"""
|
240 |
+
Edits:
|
241 |
+
- offset set to 0 (no padding token)
|
242 |
+
- use image_length + 1 (for BOS) instead of max_position_embeddings
|
243 |
+
- use custom FlaxBartDecoderLayerCollection
|
244 |
+
- embed_tokens cannot be None (issue at compile time)
|
245 |
+
"""
|
246 |
+
|
247 |
+
def setup(self):
|
248 |
+
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
249 |
+
|
250 |
+
embed_dim = self.config.d_model
|
251 |
+
self.padding_idx = self.config.pad_token_id
|
252 |
+
self.embed_scale = (
|
253 |
+
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
254 |
+
)
|
255 |
+
|
256 |
+
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
257 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
258 |
+
self.offset = 0
|
259 |
+
self.embed_positions = nn.Embed(
|
260 |
+
self.config.image_length + 1 + self.offset, # image length + 1 for BOS
|
261 |
+
embed_dim,
|
262 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
263 |
+
)
|
264 |
+
|
265 |
+
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
|
266 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
267 |
+
|
268 |
+
|
269 |
+
class FlaxBartModule(FlaxBartModule):
|
270 |
+
"""
|
271 |
+
Edits
|
272 |
+
- use custom FlaxBartEncoder & FlaxBartDecoder
|
273 |
+
- use separate embeddings for Encoder & Decoder
|
274 |
+
"""
|
275 |
+
|
276 |
+
def setup(self):
|
277 |
+
encoder_embed_tokens = nn.Embed(
|
278 |
+
self.config.encoder_vocab_size,
|
279 |
+
self.config.d_model,
|
280 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
281 |
+
)
|
282 |
+
decoder_embed_tokens = nn.Embed(
|
283 |
+
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
284 |
+
self.config.d_model,
|
285 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
286 |
+
)
|
287 |
+
|
288 |
+
self.encoder = FlaxBartEncoder(
|
289 |
+
self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens
|
290 |
+
)
|
291 |
+
self.decoder = FlaxBartDecoder(
|
292 |
+
self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens
|
293 |
+
)
|
294 |
+
|
295 |
+
|
296 |
+
class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel):
|
297 |
+
"""
|
298 |
+
Edits:
|
299 |
+
- added num_params property
|
300 |
+
- config_class replaced to DalleBartConfig
|
301 |
+
- __init__ accepts abstract_init which does uses parameter shape to initialize the model
|
302 |
+
"""
|
303 |
+
|
304 |
+
config_class = DalleBartConfig
|
305 |
+
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
config: DalleBartConfig,
|
309 |
+
input_shape: Tuple[int] = (1, 1),
|
310 |
+
seed: int = 0,
|
311 |
+
dtype: jnp.dtype = jnp.float32,
|
312 |
+
abstract_init: bool = False,
|
313 |
+
**kwargs,
|
314 |
+
):
|
315 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
316 |
+
|
317 |
+
# adapted from HuggingFace FlaxPreTrainedModel
|
318 |
+
if config is None:
|
319 |
+
raise ValueError("config cannot be None")
|
320 |
+
|
321 |
+
if module is None:
|
322 |
+
raise ValueError("module cannot be None")
|
323 |
+
|
324 |
+
# Those are private to be exposed as typed property on derived classes.
|
325 |
+
self._config = config
|
326 |
+
self._module = module
|
327 |
+
|
328 |
+
# Those are public as their type is generic to every derived classes.
|
329 |
+
self.key = PRNGKey(seed)
|
330 |
+
self.dtype = dtype
|
331 |
+
|
332 |
+
# randomly initialized parameters
|
333 |
+
if abstract_init:
|
334 |
+
# init the model weights only abstractly, eval_shape will return a pytree
|
335 |
+
# with the structure as weights but without any actual values, this will just contain
|
336 |
+
# the shape information. Weights need to be loaded later.
|
337 |
+
init_fn = partial(self.init_weights, input_shape=input_shape)
|
338 |
+
random_params = jax.eval_shape(init_fn, self.key)
|
339 |
+
else:
|
340 |
+
random_params = self.init_weights(self.key, input_shape)
|
341 |
+
|
342 |
+
# save required_params as set
|
343 |
+
self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
|
344 |
+
self.params = random_params
|
345 |
+
|
346 |
+
@property
|
347 |
+
def num_params(self):
|
348 |
+
num_params = jax.tree_map(
|
349 |
+
lambda param: param.size, flatten_dict(unfreeze(self.params))
|
350 |
+
).values()
|
351 |
+
return sum(list(num_params))
|
352 |
+
|
353 |
+
|
354 |
+
class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
355 |
+
"""
|
356 |
+
Edits:
|
357 |
+
- no bias
|
358 |
+
- lm_head set to image_vocab_size + 1 (for BOS)
|
359 |
+
- uses custom FlaxBartModule
|
360 |
+
"""
|
361 |
+
|
362 |
+
def setup(self):
|
363 |
+
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
364 |
+
self.lm_head = nn.Dense(
|
365 |
+
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
366 |
+
use_bias=False,
|
367 |
+
dtype=self.dtype,
|
368 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
369 |
+
)
|
370 |
+
|
371 |
+
def __call__(
|
372 |
+
self,
|
373 |
+
input_ids,
|
374 |
+
attention_mask,
|
375 |
+
decoder_input_ids,
|
376 |
+
decoder_attention_mask,
|
377 |
+
position_ids,
|
378 |
+
decoder_position_ids,
|
379 |
+
output_attentions: bool = False,
|
380 |
+
output_hidden_states: bool = False,
|
381 |
+
return_dict: bool = True,
|
382 |
+
deterministic: bool = True,
|
383 |
+
):
|
384 |
+
outputs = self.model(
|
385 |
+
input_ids=input_ids,
|
386 |
+
attention_mask=attention_mask,
|
387 |
+
decoder_input_ids=decoder_input_ids,
|
388 |
+
decoder_attention_mask=decoder_attention_mask,
|
389 |
+
position_ids=position_ids,
|
390 |
+
decoder_position_ids=decoder_position_ids,
|
391 |
+
output_attentions=output_attentions,
|
392 |
+
output_hidden_states=output_hidden_states,
|
393 |
+
return_dict=return_dict,
|
394 |
+
deterministic=deterministic,
|
395 |
+
)
|
396 |
+
|
397 |
+
hidden_states = outputs[0]
|
398 |
+
|
399 |
+
if self.config.tie_word_embeddings:
|
400 |
+
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
|
401 |
+
lm_logits = self.lm_head.apply(
|
402 |
+
{"params": {"kernel": shared_embedding.T}}, hidden_states
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
lm_logits = self.lm_head(hidden_states)
|
406 |
+
|
407 |
+
if not return_dict:
|
408 |
+
output = (lm_logits,) + outputs[1:]
|
409 |
+
return output
|
410 |
+
|
411 |
+
return FlaxSeq2SeqLMOutput(
|
412 |
+
logits=lm_logits,
|
413 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
414 |
+
decoder_attentions=outputs.decoder_attentions,
|
415 |
+
cross_attentions=outputs.cross_attentions,
|
416 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
417 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
418 |
+
encoder_attentions=outputs.encoder_attentions,
|
419 |
+
)
|
420 |
+
|
421 |
+
|
422 |
+
class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration):
|
423 |
+
"""
|
424 |
+
Edits:
|
425 |
+
- renamed from FlaxBartForConditionalGeneration
|
426 |
+
- uses custom FlaxBartPreTrainedModel
|
427 |
+
- uses custom FlaxBartForConditionalGenerationModule
|
428 |
+
- no bias in decode method
|
429 |
+
"""
|
430 |
+
|
431 |
+
module_class = FlaxBartForConditionalGenerationModule
|
432 |
+
|
433 |
+
def decode(
|
434 |
+
self,
|
435 |
+
decoder_input_ids,
|
436 |
+
encoder_outputs,
|
437 |
+
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
438 |
+
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
439 |
+
decoder_position_ids: Optional[jnp.ndarray] = None,
|
440 |
+
past_key_values: dict = None,
|
441 |
+
output_attentions: Optional[bool] = None,
|
442 |
+
output_hidden_states: Optional[bool] = None,
|
443 |
+
return_dict: Optional[bool] = None,
|
444 |
+
train: bool = False,
|
445 |
+
params: dict = None,
|
446 |
+
dropout_rng: PRNGKey = None,
|
447 |
+
):
|
448 |
+
output_attentions = (
|
449 |
+
output_attentions
|
450 |
+
if output_attentions is not None
|
451 |
+
else self.config.output_attentions
|
452 |
+
)
|
453 |
+
output_hidden_states = (
|
454 |
+
output_hidden_states
|
455 |
+
if output_hidden_states is not None
|
456 |
+
else self.config.output_hidden_states
|
457 |
+
)
|
458 |
+
return_dict = (
|
459 |
+
return_dict if return_dict is not None else self.config.return_dict
|
460 |
+
)
|
461 |
+
|
462 |
+
encoder_hidden_states = encoder_outputs[0]
|
463 |
+
if encoder_attention_mask is None:
|
464 |
+
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
465 |
+
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
466 |
+
|
467 |
+
batch_size, sequence_length = decoder_input_ids.shape
|
468 |
+
if decoder_attention_mask is None:
|
469 |
+
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
|
470 |
+
|
471 |
+
if decoder_position_ids is None:
|
472 |
+
if past_key_values is not None:
|
473 |
+
raise ValueError(
|
474 |
+
"Make sure to provide `decoder_position_ids` when passing `past_key_values`."
|
475 |
+
)
|
476 |
+
|
477 |
+
decoder_position_ids = jnp.broadcast_to(
|
478 |
+
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
479 |
+
)
|
480 |
+
|
481 |
+
# Handle any PRNG if needed
|
482 |
+
rngs = {}
|
483 |
+
if dropout_rng is not None:
|
484 |
+
rngs["dropout"] = dropout_rng
|
485 |
+
|
486 |
+
inputs = {"params": params or self.params}
|
487 |
+
|
488 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
|
489 |
+
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
|
490 |
+
# it can be changed by FlaxBartAttention module
|
491 |
+
if past_key_values:
|
492 |
+
inputs["cache"] = past_key_values
|
493 |
+
mutable = ["cache"]
|
494 |
+
else:
|
495 |
+
mutable = False
|
496 |
+
|
497 |
+
def _decoder_forward(
|
498 |
+
module,
|
499 |
+
decoder_input_ids,
|
500 |
+
decoder_attention_mask,
|
501 |
+
decoder_position_ids,
|
502 |
+
**kwargs,
|
503 |
+
):
|
504 |
+
decoder_module = module._get_decoder_module()
|
505 |
+
outputs = decoder_module(
|
506 |
+
decoder_input_ids,
|
507 |
+
decoder_attention_mask,
|
508 |
+
decoder_position_ids,
|
509 |
+
**kwargs,
|
510 |
+
)
|
511 |
+
hidden_states = outputs[0]
|
512 |
+
|
513 |
+
if self.config.tie_word_embeddings:
|
514 |
+
shared_embedding = module.model.variables["params"]["shared"][
|
515 |
+
"embedding"
|
516 |
+
]
|
517 |
+
lm_logits = module.lm_head.apply(
|
518 |
+
{"params": {"kernel": shared_embedding.T}}, hidden_states
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
lm_logits = module.lm_head(hidden_states)
|
522 |
+
|
523 |
+
return lm_logits, outputs
|
524 |
+
|
525 |
+
outputs = self.module.apply(
|
526 |
+
inputs,
|
527 |
+
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
528 |
+
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
529 |
+
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
530 |
+
encoder_hidden_states=encoder_hidden_states,
|
531 |
+
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
532 |
+
output_attentions=output_attentions,
|
533 |
+
output_hidden_states=output_hidden_states,
|
534 |
+
return_dict=return_dict,
|
535 |
+
deterministic=not train,
|
536 |
+
rngs=rngs,
|
537 |
+
mutable=mutable,
|
538 |
+
method=_decoder_forward,
|
539 |
+
)
|
540 |
+
|
541 |
+
if past_key_values is None:
|
542 |
+
lm_logits, decoder_outputs = outputs
|
543 |
+
else:
|
544 |
+
(lm_logits, decoder_outputs), past = outputs
|
545 |
+
|
546 |
+
if return_dict:
|
547 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
548 |
+
logits=lm_logits,
|
549 |
+
hidden_states=decoder_outputs.hidden_states,
|
550 |
+
attentions=decoder_outputs.attentions,
|
551 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
552 |
+
)
|
553 |
+
else:
|
554 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
555 |
+
|
556 |
+
# add updated cache to model output
|
557 |
+
if past_key_values is not None and return_dict:
|
558 |
+
outputs["past_key_values"] = unfreeze(past["cache"])
|
559 |
+
return outputs
|
560 |
+
elif past_key_values is not None and not return_dict:
|
561 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
562 |
+
|
563 |
+
return outputs
|
dalle_mini/model/partitions.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
from flax.core.frozen_dict import freeze
|
4 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
5 |
+
from jax.experimental import PartitionSpec as P
|
6 |
+
|
7 |
+
# utils adapted from https://github.com/google-research/google-research/blob/master/flax_models/t5x/partitions.py
|
8 |
+
# Sentinels
|
9 |
+
_unmatched = object()
|
10 |
+
|
11 |
+
# For specifying empty leaf dict `{}`
|
12 |
+
empty_dict = object()
|
13 |
+
|
14 |
+
|
15 |
+
def _match(qs, ks):
|
16 |
+
"""Return True if regexes in qs match any window of strings in tuple ks."""
|
17 |
+
# compile regexes and force complete match
|
18 |
+
qts = tuple(map(lambda x: re.compile(x + "$"), qs))
|
19 |
+
for i in range(len(ks) - len(qs) + 1):
|
20 |
+
matches = [x.match(y) for x, y in zip(qts, ks[i:])]
|
21 |
+
if matches and all(matches):
|
22 |
+
return True
|
23 |
+
return False
|
24 |
+
|
25 |
+
|
26 |
+
def _replacement_rules(rules):
|
27 |
+
def replace(key, val):
|
28 |
+
for rule, replacement in rules:
|
29 |
+
if _match(rule, key):
|
30 |
+
return replacement
|
31 |
+
return val
|
32 |
+
|
33 |
+
return replace
|
34 |
+
|
35 |
+
|
36 |
+
def _get_partition_rules():
|
37 |
+
return [
|
38 |
+
# embeddings
|
39 |
+
((r"embed_positions", "embedding"), P("mp", None)),
|
40 |
+
((r"embed_tokens", "embedding"), P("mp", None)),
|
41 |
+
# self-attention
|
42 |
+
((r"self_attn", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")),
|
43 |
+
((r"self_attn", "out_proj", "kernel"), P("mp", None)),
|
44 |
+
# enc-dec attention
|
45 |
+
((r"encoder_attn", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")),
|
46 |
+
((r"encoder_attn", "out_proj", "kernel"), P("mp", None)),
|
47 |
+
# FFN
|
48 |
+
((r"fc1", "kernel"), P(None, "mp")),
|
49 |
+
((r"fc2", "kernel"), P("mp", None)),
|
50 |
+
# layer norms
|
51 |
+
((r"layernorm_embedding", "(bias|scale)"), None),
|
52 |
+
((r"self_attn_layer_norm", "(bias|scale)"), None),
|
53 |
+
((r"encoder_attn_layer_norm", "(bias|scale)"), None),
|
54 |
+
((r"final_layer_norm", "(bias|scale)"), None),
|
55 |
+
((r"lm_head", "kernel"), P(None, "mp")),
|
56 |
+
]
|
57 |
+
|
58 |
+
|
59 |
+
def set_partitions(in_dict):
|
60 |
+
rules = _get_partition_rules()
|
61 |
+
replace = _replacement_rules(rules)
|
62 |
+
initd = {k: _unmatched for k in flatten_dict(in_dict)}
|
63 |
+
result = {k: replace(k, v) for k, v in initd.items()}
|
64 |
+
for k, v in result.items():
|
65 |
+
if v == _unmatched:
|
66 |
+
print(k)
|
67 |
+
assert _unmatched not in result.values(), "Incomplete partition spec."
|
68 |
+
return freeze(unflatten_dict(result))
|
setup.cfg
CHANGED
@@ -23,5 +23,6 @@ dev =
|
|
23 |
tqdm
|
24 |
wandb
|
25 |
optax
|
|
|
26 |
black[jupyter]
|
27 |
isort
|
|
|
23 |
tqdm
|
24 |
wandb
|
25 |
optax
|
26 |
+
braceexpand
|
27 |
black[jupyter]
|
28 |
isort
|
tools/inference/inference_pipeline.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tools/train/config/medium/config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.0,
|
3 |
+
"activation_function": "gelu",
|
4 |
+
"attention_dropout": 0.0,
|
5 |
+
"bos_token_id": 16385,
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_model": 1536,
|
8 |
+
"decoder_attention_heads": 16,
|
9 |
+
"decoder_ffn_dim": 4096,
|
10 |
+
"decoder_layerdrop": 0.0,
|
11 |
+
"decoder_layers": 18,
|
12 |
+
"decoder_start_token_id": 16384,
|
13 |
+
"dropout": 0.1,
|
14 |
+
"encoder_attention_heads": 16,
|
15 |
+
"encoder_ffn_dim": 4096,
|
16 |
+
"encoder_layerdrop": 0.0,
|
17 |
+
"encoder_layers": 18,
|
18 |
+
"encoder_vocab_size": 50264,
|
19 |
+
"eos_token_id": 16385,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"image_length": 256,
|
22 |
+
"image_vocab_size": 16384,
|
23 |
+
"init_std": 0.01,
|
24 |
+
"is_encoder_decoder": true,
|
25 |
+
"max_text_length": 64,
|
26 |
+
"model_type": "dallebart",
|
27 |
+
"normalize_text": true,
|
28 |
+
"pad_token_id": 16385,
|
29 |
+
"scale_embedding": false,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"transformers_version": "4.13.0.dev0",
|
32 |
+
"use_cache": true
|
33 |
+
}
|
tools/train/config/mega/config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.0,
|
3 |
+
"activation_function": "gelu",
|
4 |
+
"attention_dropout": 0.0,
|
5 |
+
"bos_token_id": 16385,
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_model": 2048,
|
8 |
+
"decoder_attention_heads": 16,
|
9 |
+
"decoder_ffn_dim": 4096,
|
10 |
+
"decoder_layerdrop": 0.0,
|
11 |
+
"decoder_layers": 31,
|
12 |
+
"decoder_start_token_id": 16384,
|
13 |
+
"dropout": 0.1,
|
14 |
+
"encoder_attention_heads": 16,
|
15 |
+
"encoder_ffn_dim": 4096,
|
16 |
+
"encoder_layerdrop": 0.0,
|
17 |
+
"encoder_layers": 31,
|
18 |
+
"encoder_vocab_size": 50264,
|
19 |
+
"eos_token_id": 16385,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"image_length": 256,
|
22 |
+
"image_vocab_size": 16384,
|
23 |
+
"init_std": 0.01,
|
24 |
+
"is_encoder_decoder": true,
|
25 |
+
"max_text_length": 64,
|
26 |
+
"model_type": "dallebart",
|
27 |
+
"normalize_text": true,
|
28 |
+
"pad_token_id": 16385,
|
29 |
+
"scale_embedding": false,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"transformers_version": "4.13.0.dev0",
|
32 |
+
"use_cache": true
|
33 |
+
}
|
tools/train/config/micro/config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.0,
|
3 |
+
"activation_function": "gelu",
|
4 |
+
"attention_dropout": 0.0,
|
5 |
+
"bos_token_id": 16385,
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_model": 1024,
|
8 |
+
"decoder_attention_heads": 16,
|
9 |
+
"decoder_ffn_dim": 2048,
|
10 |
+
"decoder_layerdrop": 0.0,
|
11 |
+
"decoder_layers": 6,
|
12 |
+
"decoder_start_token_id": 16384,
|
13 |
+
"dropout": 0.1,
|
14 |
+
"encoder_attention_heads": 16,
|
15 |
+
"encoder_ffn_dim": 2048,
|
16 |
+
"encoder_layerdrop": 0.0,
|
17 |
+
"encoder_layers": 6,
|
18 |
+
"encoder_vocab_size": 50264,
|
19 |
+
"eos_token_id": 16385,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"image_length": 256,
|
22 |
+
"image_vocab_size": 16384,
|
23 |
+
"init_std": 0.02,
|
24 |
+
"is_encoder_decoder": true,
|
25 |
+
"max_text_length": 64,
|
26 |
+
"model_type": "dallebart",
|
27 |
+
"normalize_text": true,
|
28 |
+
"pad_token_id": 16385,
|
29 |
+
"scale_embedding": false,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"transformers_version": "4.13.0.dev0",
|
32 |
+
"use_cache": true
|
33 |
+
}
|
tools/train/config/mini/config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.0,
|
3 |
+
"activation_function": "gelu",
|
4 |
+
"attention_dropout": 0.0,
|
5 |
+
"bos_token_id": 16385,
|
6 |
+
"classifier_dropout": 0.0,
|
7 |
+
"d_model": 1024,
|
8 |
+
"decoder_attention_heads": 16,
|
9 |
+
"decoder_ffn_dim": 4096,
|
10 |
+
"decoder_layerdrop": 0.0,
|
11 |
+
"decoder_layers": 12,
|
12 |
+
"decoder_start_token_id": 16384,
|
13 |
+
"dropout": 0.1,
|
14 |
+
"encoder_attention_heads": 16,
|
15 |
+
"encoder_ffn_dim": 4096,
|
16 |
+
"encoder_layerdrop": 0.0,
|
17 |
+
"encoder_layers": 12,
|
18 |
+
"encoder_vocab_size": 50264,
|
19 |
+
"eos_token_id": 16385,
|
20 |
+
"gradient_checkpointing": false,
|
21 |
+
"image_length": 256,
|
22 |
+
"image_vocab_size": 16384,
|
23 |
+
"init_std": 0.02,
|
24 |
+
"is_encoder_decoder": true,
|
25 |
+
"max_text_length": 64,
|
26 |
+
"model_type": "dallebart",
|
27 |
+
"normalize_text": true,
|
28 |
+
"pad_token_id": 16385,
|
29 |
+
"scale_embedding": false,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"transformers_version": "4.13.0.dev0",
|
32 |
+
"use_cache": true
|
33 |
+
}
|
tools/train/distributed_shampoo.py
ADDED
@@ -0,0 +1,1826 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""File copied from https://github.com/google-research/google-research/edit/master/scalable_shampoo/optax/distributed_shampoo.py"""
|
2 |
+
|
3 |
+
# coding=utf-8
|
4 |
+
# Copyright 2021 The Google Research Authors.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
# An implementation of distributed Shampoo optimizer from:
|
19 |
+
#
|
20 |
+
# Scalable Second Order Optimization for Deep Learning
|
21 |
+
# Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer
|
22 |
+
# Preprint Paper: https://arxiv.org/abs/2002.09018
|
23 |
+
#
|
24 |
+
# This implementation moves computation of inverse pth root back to the
|
25 |
+
# accelerator (if higher precision is available).
|
26 |
+
#
|
27 |
+
# Authors: Rohan Anil (rohananil at google dot com)
|
28 |
+
# & Vineet Gupta (vineet at google dot com)
|
29 |
+
#
|
30 |
+
|
31 |
+
"""Distributed Shampoo Implementation."""
|
32 |
+
|
33 |
+
import enum
|
34 |
+
import functools
|
35 |
+
import itertools
|
36 |
+
from typing import Any, List, NamedTuple
|
37 |
+
|
38 |
+
import chex
|
39 |
+
import jax
|
40 |
+
import jax.experimental.pjit as pjit
|
41 |
+
import jax.numpy as jnp
|
42 |
+
import numpy as np
|
43 |
+
import optax
|
44 |
+
from flax import struct
|
45 |
+
from jax import lax
|
46 |
+
|
47 |
+
|
48 |
+
# pylint:disable=no-value-for-parameter
|
49 |
+
@struct.dataclass
|
50 |
+
class QuantizedValue:
|
51 |
+
"""State associated with quantized value."""
|
52 |
+
|
53 |
+
quantized: chex.Array
|
54 |
+
diagonal: chex.Array # Diagonal (if extract_diagonal is set)
|
55 |
+
bucket_size: chex.Array
|
56 |
+
quantized_dtype: jnp.dtype = struct.field(
|
57 |
+
pytree_node=False
|
58 |
+
) # Dtype for the quantized value.
|
59 |
+
extract_diagonal: bool = struct.field(pytree_node=False) # In case its centered.
|
60 |
+
shape: Any = struct.field(pytree_node=False) # Shape of the tensor.
|
61 |
+
|
62 |
+
@classmethod
|
63 |
+
def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False):
|
64 |
+
if isinstance(fvalue, list) and not fvalue:
|
65 |
+
return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, [])
|
66 |
+
quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize(
|
67 |
+
fvalue, quantized_dtype, extract_diagonal
|
68 |
+
)
|
69 |
+
return QuantizedValue(
|
70 |
+
quantized,
|
71 |
+
diagonal_fvalue,
|
72 |
+
bucket_size,
|
73 |
+
quantized_dtype,
|
74 |
+
extract_diagonal,
|
75 |
+
list(quantized.shape),
|
76 |
+
)
|
77 |
+
|
78 |
+
# Quantization is from Lingvo JAX optimizers.
|
79 |
+
# We extend it for int16 quantization of PSD matrices.
|
80 |
+
@classmethod
|
81 |
+
def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False):
|
82 |
+
"""Returns quantized value and the bucket."""
|
83 |
+
if quantized_dtype == jnp.float32:
|
84 |
+
return fvalue, [], []
|
85 |
+
elif quantized_dtype == jnp.bfloat16:
|
86 |
+
return fvalue.astype(jnp.bfloat16), [], []
|
87 |
+
|
88 |
+
float_dtype = fvalue.dtype
|
89 |
+
if quantized_dtype == jnp.int8:
|
90 |
+
# value -128 is not used.
|
91 |
+
num_buckets = jnp.array(127.0, dtype=float_dtype)
|
92 |
+
elif quantized_dtype == jnp.int16:
|
93 |
+
# value -32768 is not used.
|
94 |
+
num_buckets = jnp.array(32767.0, dtype=float_dtype)
|
95 |
+
else:
|
96 |
+
raise ValueError(f"Quantized dtype {quantized_dtype} not supported.")
|
97 |
+
# max value is mapped to num_buckets
|
98 |
+
|
99 |
+
if extract_diagonal and fvalue.ndim != 2:
|
100 |
+
raise ValueError(
|
101 |
+
f"Input array {fvalue} must be 2D to work with extract_diagonal."
|
102 |
+
)
|
103 |
+
|
104 |
+
diagonal_fvalue = []
|
105 |
+
if extract_diagonal:
|
106 |
+
diagonal_fvalue = jnp.diag(fvalue)
|
107 |
+
# Remove the diagonal entries.
|
108 |
+
fvalue = fvalue - jnp.diag(diagonal_fvalue)
|
109 |
+
|
110 |
+
# TODO(rohananil): Extend this by making use of information about the blocks
|
111 |
+
# SM3 style which will be useful for diagonal statistics
|
112 |
+
# We first decide the scale.
|
113 |
+
if fvalue.ndim < 1:
|
114 |
+
raise ValueError(
|
115 |
+
f"Input array {fvalue} must have a strictly positive number of "
|
116 |
+
"dimensions."
|
117 |
+
)
|
118 |
+
|
119 |
+
max_abs = jnp.max(jnp.abs(fvalue), axis=0)
|
120 |
+
bucket_size = max_abs / num_buckets
|
121 |
+
bs_expanded = bucket_size[jnp.newaxis, Ellipsis]
|
122 |
+
# To avoid divide by 0.0
|
123 |
+
bs_nonzero = jnp.where(
|
124 |
+
bs_expanded > 0.0, bs_expanded, jnp.ones_like(bs_expanded)
|
125 |
+
)
|
126 |
+
ratio = fvalue / bs_nonzero
|
127 |
+
# We use rounding to remove bias.
|
128 |
+
quantized = jnp.round(ratio)
|
129 |
+
return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size
|
130 |
+
|
131 |
+
def to_float(self):
|
132 |
+
"""Returns the float value."""
|
133 |
+
if isinstance(self.quantized, list) and not self.quantized:
|
134 |
+
return self.quantized
|
135 |
+
|
136 |
+
if self.quantized_dtype == jnp.float32:
|
137 |
+
return self.quantized
|
138 |
+
|
139 |
+
if self.quantized_dtype == jnp.bfloat16:
|
140 |
+
return self.quantized.astype(jnp.float32)
|
141 |
+
|
142 |
+
float_dtype = self.bucket_size.dtype
|
143 |
+
bucket_size = self.bucket_size[jnp.newaxis, Ellipsis]
|
144 |
+
val = self.quantized.astype(float_dtype) * bucket_size
|
145 |
+
if self.extract_diagonal:
|
146 |
+
val += jnp.diag(self.diagonal)
|
147 |
+
return val
|
148 |
+
|
149 |
+
|
150 |
+
# Per parameter optimizer state used in data-parallel training.
|
151 |
+
class ParameterStats(NamedTuple):
|
152 |
+
"""State associated to each parameter of the model being trained."""
|
153 |
+
|
154 |
+
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
155 |
+
statistics: List[Any] # Statistics (QuantizedValue, chex.Array)
|
156 |
+
preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array)
|
157 |
+
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
158 |
+
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
159 |
+
|
160 |
+
|
161 |
+
# For training extremely large model; We keep a global state with a concatenated
|
162 |
+
# statistics and preconditioner states for all vars. This is so that we can
|
163 |
+
# annotate the leading axis to be sharded to save memory at the cost of
|
164 |
+
# communication.
|
165 |
+
@struct.dataclass
|
166 |
+
class GlobalShardedParameterStats:
|
167 |
+
statistics: chex.Array # Statistics
|
168 |
+
preconditioners: chex.Array # Preconditioners
|
169 |
+
|
170 |
+
|
171 |
+
# These are per-parameter local states; All statistics here mirror the parameter
|
172 |
+
# Thus the sharding is copied over from the param specification.
|
173 |
+
@struct.dataclass
|
174 |
+
class LocalShardedParameterStats:
|
175 |
+
"""State associated to each parameter of the model being trained."""
|
176 |
+
|
177 |
+
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
178 |
+
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
179 |
+
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
180 |
+
index_start: np.int32 = struct.field(
|
181 |
+
pytree_node=False
|
182 |
+
) # Index into global statistics array
|
183 |
+
sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics.
|
184 |
+
|
185 |
+
|
186 |
+
class ShardedShampooStats(NamedTuple):
|
187 |
+
"""Shampoo state in sharded mode."""
|
188 |
+
|
189 |
+
global_stats: Any
|
190 |
+
local_stats: Any
|
191 |
+
|
192 |
+
|
193 |
+
class ShampooState(NamedTuple):
|
194 |
+
count: chex.Array
|
195 |
+
stats: Any
|
196 |
+
|
197 |
+
|
198 |
+
class GraftingType(enum.IntEnum):
|
199 |
+
SGD = 1
|
200 |
+
ADAGRAD = 2
|
201 |
+
RMSPROP = 3
|
202 |
+
RMSPROP_NORMALIZED = 4
|
203 |
+
|
204 |
+
|
205 |
+
def power_iteration(
|
206 |
+
matrix, num_iters=100, error_tolerance=1e-6, precision=lax.Precision.HIGHEST
|
207 |
+
):
|
208 |
+
r"""Power iteration algorithm.
|
209 |
+
|
210 |
+
The power iteration algorithm takes a symmetric PSD matrix `A`, and produces
|
211 |
+
a scalar `\lambda` , which is the greatest (in absolute value) eigenvalue
|
212 |
+
of `A`, and a vector v, which is the corresponding eigenvector of `A`.
|
213 |
+
|
214 |
+
References:
|
215 |
+
[Wikipedia, 2021](https://en.wikipedia.org/wiki/Power_iteration)
|
216 |
+
|
217 |
+
Args:
|
218 |
+
matrix: the symmetric PSD matrix.
|
219 |
+
num_iters: Number of iterations.
|
220 |
+
error_tolerance: Iterative exit condition.
|
221 |
+
precision: precision XLA related flag, the available options are:
|
222 |
+
a) lax.Precision.DEFAULT (better step time, but not precise)
|
223 |
+
b) lax.Precision.HIGH (increased precision, slower)
|
224 |
+
c) lax.Precision.HIGHEST (best possible precision, slowest)
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
eigen vector, eigen value
|
228 |
+
"""
|
229 |
+
matrix_size = matrix.shape[-1]
|
230 |
+
|
231 |
+
def _iter_condition(state):
|
232 |
+
i, unused_v, unused_s, unused_s_v, run_step = state
|
233 |
+
return jnp.logical_and(i < num_iters, run_step)
|
234 |
+
|
235 |
+
def _iter_body(state):
|
236 |
+
"""One step of power iteration."""
|
237 |
+
i, new_v, s, s_v, unused_run_step = state
|
238 |
+
new_v = new_v / jnp.linalg.norm(new_v)
|
239 |
+
|
240 |
+
s_v = jnp.einsum("ij,j->i", matrix, new_v, precision=precision)
|
241 |
+
s_new = jnp.einsum("i,i->", new_v, s_v, precision=precision)
|
242 |
+
return (
|
243 |
+
i + 1,
|
244 |
+
s_v,
|
245 |
+
s_new,
|
246 |
+
s_v,
|
247 |
+
jnp.greater(jnp.abs(s_new - s), error_tolerance),
|
248 |
+
)
|
249 |
+
|
250 |
+
# Figure out how to use step as seed for random.
|
251 |
+
v_0 = (
|
252 |
+
np.random.RandomState(1729).uniform(-1.0, 1.0, matrix_size).astype(matrix.dtype)
|
253 |
+
)
|
254 |
+
|
255 |
+
init_state = tuple([0, v_0, jnp.zeros([], dtype=matrix.dtype), v_0, True])
|
256 |
+
_, v_out, s_out, _, _ = lax.while_loop(_iter_condition, _iter_body, init_state)
|
257 |
+
v_out = v_out / jnp.linalg.norm(v_out)
|
258 |
+
return v_out, s_out
|
259 |
+
|
260 |
+
|
261 |
+
def matrix_inverse_pth_root(
|
262 |
+
matrix,
|
263 |
+
p,
|
264 |
+
num_iters=100,
|
265 |
+
ridge_epsilon=1e-6,
|
266 |
+
error_tolerance=1e-6,
|
267 |
+
precision=lax.Precision.HIGHEST,
|
268 |
+
):
|
269 |
+
"""Computes `matrix^(-1/p)`, where `p` is a positive integer.
|
270 |
+
|
271 |
+
This function uses the Coupled newton iterations algorithm for
|
272 |
+
the computation of a matrix's inverse pth root.
|
273 |
+
|
274 |
+
|
275 |
+
References:
|
276 |
+
[Functions of Matrices, Theory and Computation,
|
277 |
+
Nicholas J Higham, Pg 184, Eq 7.18](
|
278 |
+
https://epubs.siam.org/doi/book/10.1137/1.9780898717778)
|
279 |
+
|
280 |
+
Args:
|
281 |
+
matrix: the symmetric PSD matrix whose power it to be computed
|
282 |
+
p: exponent, for p a positive integer.
|
283 |
+
num_iters: Maximum number of iterations.
|
284 |
+
ridge_epsilon: Ridge epsilon added to make the matrix positive definite.
|
285 |
+
error_tolerance: Error indicator, useful for early termination.
|
286 |
+
precision: precision XLA related flag, the available options are:
|
287 |
+
a) lax.Precision.DEFAULT (better step time, but not precise)
|
288 |
+
b) lax.Precision.HIGH (increased precision, slower)
|
289 |
+
c) lax.Precision.HIGHEST (best possible precision, slowest)
|
290 |
+
|
291 |
+
Returns:
|
292 |
+
matrix^(-1/p)
|
293 |
+
"""
|
294 |
+
|
295 |
+
# We use float32 for the matrix inverse pth root.
|
296 |
+
# Switch to f64 if you have hardware that supports it.
|
297 |
+
matrix_size = matrix.shape[0]
|
298 |
+
alpha = jnp.asarray(-1.0 / p, jnp.float32)
|
299 |
+
identity = jnp.eye(matrix_size, dtype=jnp.float32)
|
300 |
+
_, max_ev = power_iteration(
|
301 |
+
matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision
|
302 |
+
)
|
303 |
+
ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, 1e-16)
|
304 |
+
|
305 |
+
def _unrolled_mat_pow_1(mat_m):
|
306 |
+
"""Computes mat_m^1."""
|
307 |
+
return mat_m
|
308 |
+
|
309 |
+
def _unrolled_mat_pow_2(mat_m):
|
310 |
+
"""Computes mat_m^2."""
|
311 |
+
return jnp.matmul(mat_m, mat_m, precision=precision)
|
312 |
+
|
313 |
+
def _unrolled_mat_pow_4(mat_m):
|
314 |
+
"""Computes mat_m^4."""
|
315 |
+
mat_pow_2 = _unrolled_mat_pow_2(mat_m)
|
316 |
+
return jnp.matmul(mat_pow_2, mat_pow_2, precision=precision)
|
317 |
+
|
318 |
+
def _unrolled_mat_pow_8(mat_m):
|
319 |
+
"""Computes mat_m^4."""
|
320 |
+
mat_pow_4 = _unrolled_mat_pow_4(mat_m)
|
321 |
+
return jnp.matmul(mat_pow_4, mat_pow_4, precision=precision)
|
322 |
+
|
323 |
+
def mat_power(mat_m, p):
|
324 |
+
"""Computes mat_m^p, for p == 1, 2, 4 or 8.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
mat_m: a square matrix
|
328 |
+
p: a positive integer
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
mat_m^p
|
332 |
+
"""
|
333 |
+
# We unrolled the loop for performance reasons.
|
334 |
+
exponent = jnp.round(jnp.log2(p))
|
335 |
+
return lax.switch(
|
336 |
+
jnp.asarray(exponent, jnp.int32),
|
337 |
+
[
|
338 |
+
_unrolled_mat_pow_1,
|
339 |
+
_unrolled_mat_pow_2,
|
340 |
+
_unrolled_mat_pow_4,
|
341 |
+
_unrolled_mat_pow_8,
|
342 |
+
],
|
343 |
+
(mat_m),
|
344 |
+
)
|
345 |
+
|
346 |
+
def _iter_condition(state):
|
347 |
+
(i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, run_step) = state
|
348 |
+
error_above_threshold = jnp.logical_and(error > error_tolerance, run_step)
|
349 |
+
return jnp.logical_and(i < num_iters, error_above_threshold)
|
350 |
+
|
351 |
+
def _iter_body(state):
|
352 |
+
(i, mat_m, mat_h, unused_old_mat_h, error, unused_run_step) = state
|
353 |
+
mat_m_i = (1 - alpha) * identity + alpha * mat_m
|
354 |
+
new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision)
|
355 |
+
new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision)
|
356 |
+
new_error = jnp.max(jnp.abs(new_mat_m - identity))
|
357 |
+
# sometimes error increases after an iteration before decreasing and
|
358 |
+
# converging. 1.2 factor is used to bound the maximal allowed increase.
|
359 |
+
return (i + 1, new_mat_m, new_mat_h, mat_h, new_error, new_error < error * 1.2)
|
360 |
+
|
361 |
+
if matrix_size == 1:
|
362 |
+
resultant_mat_h = (matrix + ridge_epsilon) ** alpha
|
363 |
+
error = 0
|
364 |
+
else:
|
365 |
+
damped_matrix = matrix + ridge_epsilon * identity
|
366 |
+
|
367 |
+
z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix))
|
368 |
+
new_mat_m_0 = damped_matrix * z
|
369 |
+
new_error = jnp.max(jnp.abs(new_mat_m_0 - identity))
|
370 |
+
new_mat_h_0 = identity * jnp.power(z, 1.0 / p)
|
371 |
+
init_state = tuple([0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, True])
|
372 |
+
_, mat_m, mat_h, old_mat_h, error, convergence = lax.while_loop(
|
373 |
+
_iter_condition, _iter_body, init_state
|
374 |
+
)
|
375 |
+
error = jnp.max(jnp.abs(mat_m - identity))
|
376 |
+
is_converged = jnp.asarray(convergence, old_mat_h.dtype)
|
377 |
+
resultant_mat_h = is_converged * mat_h + (1 - is_converged) * old_mat_h
|
378 |
+
resultant_mat_h = jnp.asarray(resultant_mat_h, matrix.dtype)
|
379 |
+
return resultant_mat_h, error
|
380 |
+
|
381 |
+
|
382 |
+
def merge_small_dims(shape_to_merge, max_dim):
|
383 |
+
"""Merge small dimensions.
|
384 |
+
|
385 |
+
If there are some small dimensions, we collapse them:
|
386 |
+
e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024
|
387 |
+
[1, 2, 768, 1, 2048] --> [2, 768, 2048]
|
388 |
+
|
389 |
+
Args:
|
390 |
+
shape_to_merge: Shape to merge small dimensions.
|
391 |
+
max_dim: Maximal dimension of output shape used in merging.
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
Merged shape.
|
395 |
+
"""
|
396 |
+
resulting_shape = []
|
397 |
+
product = 1
|
398 |
+
for d in shape_to_merge:
|
399 |
+
if product * d <= max_dim:
|
400 |
+
product *= d
|
401 |
+
else:
|
402 |
+
if product > 1:
|
403 |
+
resulting_shape.append(product)
|
404 |
+
product = d
|
405 |
+
if product > 1:
|
406 |
+
resulting_shape.append(product)
|
407 |
+
return resulting_shape
|
408 |
+
|
409 |
+
|
410 |
+
def pad_matrix(mat, max_size):
|
411 |
+
"""Pad a matrix to a max_size.
|
412 |
+
|
413 |
+
Args:
|
414 |
+
mat: a matrix to pad.
|
415 |
+
max_size: matrix size requested.
|
416 |
+
|
417 |
+
Returns:
|
418 |
+
Given M returns [[M, 0], [0, I]]
|
419 |
+
"""
|
420 |
+
size = mat.shape[0]
|
421 |
+
assert size <= max_size
|
422 |
+
if size == max_size:
|
423 |
+
return mat
|
424 |
+
pad_size = max_size - size
|
425 |
+
zs1 = jnp.zeros([size, pad_size], dtype=mat.dtype)
|
426 |
+
zs2 = jnp.zeros([pad_size, size], dtype=mat.dtype)
|
427 |
+
eye = jnp.eye(pad_size, dtype=mat.dtype)
|
428 |
+
mat = jnp.concatenate([mat, zs1], 1)
|
429 |
+
mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0)
|
430 |
+
return mat
|
431 |
+
|
432 |
+
|
433 |
+
def pad_vector(vec, max_size):
|
434 |
+
"""Pad a vector to a max_size.
|
435 |
+
|
436 |
+
Args:
|
437 |
+
vec: a vector to pad.
|
438 |
+
max_size: matrix size requested.
|
439 |
+
|
440 |
+
Returns:
|
441 |
+
Given V returns [V, 0]
|
442 |
+
"""
|
443 |
+
size = vec.shape[0]
|
444 |
+
assert size <= max_size
|
445 |
+
if size == max_size:
|
446 |
+
return vec
|
447 |
+
pad_size = max_size - size
|
448 |
+
zs1 = jnp.zeros([pad_size], dtype=vec.dtype)
|
449 |
+
return jnp.concatenate([vec, zs1], 0)
|
450 |
+
|
451 |
+
|
452 |
+
def efficient_cond(predicate, compute_fn, init_state, *args, **kwargs):
|
453 |
+
"""Avoids wasteful buffer allocation with XLA."""
|
454 |
+
|
455 |
+
def _iter_body(unused_state):
|
456 |
+
results = compute_fn(*args, **kwargs)
|
457 |
+
return tuple([False] + list(results))
|
458 |
+
|
459 |
+
def _iter_condition(state):
|
460 |
+
return state[0]
|
461 |
+
|
462 |
+
results = jax.lax.while_loop(
|
463 |
+
_iter_condition, _iter_body, tuple([predicate] + init_state)
|
464 |
+
)
|
465 |
+
return tuple(results[1:])
|
466 |
+
|
467 |
+
|
468 |
+
class BlockPartitioner:
|
469 |
+
"""Partitions a tensor into smaller tensors."""
|
470 |
+
|
471 |
+
def __init__(self, param, block_size):
|
472 |
+
self._shape = param.shape
|
473 |
+
self._splits = []
|
474 |
+
split_sizes = []
|
475 |
+
# We split params into smaller blocks. Here we store the metadata to make
|
476 |
+
# that split.
|
477 |
+
for i, d in enumerate(param.shape):
|
478 |
+
if 0 < block_size < d:
|
479 |
+
# d-1, otherwise split appends a 0-size array.
|
480 |
+
nsplit = (d - 1) // block_size
|
481 |
+
indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size
|
482 |
+
sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size
|
483 |
+
sizes[-1] = d - indices[-1]
|
484 |
+
self._splits.append((i, indices))
|
485 |
+
split_sizes.append(sizes)
|
486 |
+
else:
|
487 |
+
split_sizes.append(np.array([d], dtype=np.int32))
|
488 |
+
self._num_splits = len(split_sizes)
|
489 |
+
self._preconditioner_shapes = []
|
490 |
+
for t in itertools.product(*split_sizes):
|
491 |
+
self._preconditioner_shapes.extend([[d, d] for d in t])
|
492 |
+
|
493 |
+
def shapes_for_preconditioners(self):
|
494 |
+
return self._preconditioner_shapes
|
495 |
+
|
496 |
+
def num_splits(self):
|
497 |
+
return self._num_splits
|
498 |
+
|
499 |
+
def partition(self, tensor):
|
500 |
+
"""Partition tensor into blocks."""
|
501 |
+
|
502 |
+
assert tensor.shape == self._shape
|
503 |
+
tensors = [tensor]
|
504 |
+
for (i, indices) in self._splits:
|
505 |
+
tensors_local = []
|
506 |
+
for t in tensors:
|
507 |
+
tensors_local.extend(jnp.split(t, indices_or_sections=indices, axis=i))
|
508 |
+
tensors = tensors_local
|
509 |
+
return tensors
|
510 |
+
|
511 |
+
def merge_partitions(self, partitions):
|
512 |
+
"""Merge partitions back to original shape."""
|
513 |
+
|
514 |
+
for (i, indices) in reversed(self._splits):
|
515 |
+
n = len(indices) + 1
|
516 |
+
partial_merged_tensors = []
|
517 |
+
ind = 0
|
518 |
+
while ind < len(partitions):
|
519 |
+
partial_merged_tensors.append(
|
520 |
+
jnp.concatenate(partitions[ind : ind + n], axis=i)
|
521 |
+
)
|
522 |
+
ind += n
|
523 |
+
partitions = partial_merged_tensors
|
524 |
+
assert len(partitions) == 1
|
525 |
+
return partitions[0]
|
526 |
+
|
527 |
+
|
528 |
+
class Preconditioner:
|
529 |
+
"""Compute statistics/shape from gradients for preconditioning."""
|
530 |
+
|
531 |
+
def __init__(self, param, block_size, best_effort_shape_interpretation):
|
532 |
+
self._original_shape = param.shape
|
533 |
+
self._transformed_shape = param.shape
|
534 |
+
if best_effort_shape_interpretation:
|
535 |
+
self._transformed_shape = merge_small_dims(self._original_shape, block_size)
|
536 |
+
reshaped_param = jnp.reshape(param, self._transformed_shape)
|
537 |
+
self._partitioner = BlockPartitioner(reshaped_param, block_size)
|
538 |
+
|
539 |
+
def statistics_from_grad(self, grad):
|
540 |
+
"""Compute statistics from gradients.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
grad: Gradient to compute statistics from.
|
544 |
+
|
545 |
+
Returns:
|
546 |
+
A list of gradient statistics for each partition.
|
547 |
+
"""
|
548 |
+
reshaped_grad = jnp.reshape(grad, self._transformed_shape)
|
549 |
+
partitioned_grads = self._partitioner.partition(reshaped_grad)
|
550 |
+
stats = []
|
551 |
+
for g in partitioned_grads:
|
552 |
+
g_stats = []
|
553 |
+
rank = len(g.shape)
|
554 |
+
for i in range(rank):
|
555 |
+
axes = list(range(i)) + list(range(i + 1, rank))
|
556 |
+
stat = jnp.tensordot(g, g, axes=(axes, axes))
|
557 |
+
g_stats.append(stat)
|
558 |
+
stats.extend(g_stats)
|
559 |
+
return stats
|
560 |
+
|
561 |
+
def shapes_for_preconditioners(self):
|
562 |
+
"""Returns shape from statistics."""
|
563 |
+
return self._partitioner.shapes_for_preconditioners()
|
564 |
+
|
565 |
+
def exponent_for_preconditioner(self):
|
566 |
+
"""Returns exponent to use for inverse-pth root M^{-1/p}."""
|
567 |
+
return 2 * len(self._transformed_shape)
|
568 |
+
|
569 |
+
def preconditioned_grad(self, grad, preconditioners):
|
570 |
+
"""Precondition the gradient.
|
571 |
+
|
572 |
+
Args:
|
573 |
+
grad: A gradient tensor to precondition.
|
574 |
+
preconditioners: A list of preconditioners to apply.
|
575 |
+
|
576 |
+
Returns:
|
577 |
+
A preconditioned gradient.
|
578 |
+
"""
|
579 |
+
|
580 |
+
reshaped_grad = jnp.reshape(grad, self._transformed_shape)
|
581 |
+
partitioned_grads = self._partitioner.partition(reshaped_grad)
|
582 |
+
preconditioned_partitioned_grads = []
|
583 |
+
num_splits = self._partitioner.num_splits()
|
584 |
+
for i, g in enumerate(partitioned_grads):
|
585 |
+
preconditioners_for_grad = preconditioners[
|
586 |
+
i * num_splits : (i + 1) * num_splits
|
587 |
+
]
|
588 |
+
rank = len(g.shape)
|
589 |
+
precond_g = g
|
590 |
+
for j in range(rank):
|
591 |
+
precond_g = jnp.tensordot(
|
592 |
+
precond_g, preconditioners_for_grad[j], axes=[[0], [0]]
|
593 |
+
)
|
594 |
+
preconditioned_partitioned_grads.append(precond_g)
|
595 |
+
merged_grad = self._partitioner.merge_partitions(
|
596 |
+
preconditioned_partitioned_grads
|
597 |
+
)
|
598 |
+
return jnp.reshape(merged_grad, self._original_shape)
|
599 |
+
|
600 |
+
|
601 |
+
def _convert_to_parameter_stats(global_stats, local_stat):
|
602 |
+
"""Creates parameter stats from sharded stats."""
|
603 |
+
index_start = int(local_stat.index_start)
|
604 |
+
index_end = int(len(local_stat.sizes)) + index_start
|
605 |
+
statistics = global_stats.statistics[index_start:index_end, :, :]
|
606 |
+
preconditioners = global_stats.preconditioners[index_start:index_end, :, :]
|
607 |
+
new_statistics = []
|
608 |
+
new_preconditioners = []
|
609 |
+
for i, size in enumerate(local_stat.sizes):
|
610 |
+
new_statistics.append(statistics[i][:size, :size])
|
611 |
+
new_preconditioners.append(preconditioners[i][:size, :size])
|
612 |
+
return ParameterStats(
|
613 |
+
local_stat.diagonal_statistics,
|
614 |
+
new_statistics,
|
615 |
+
new_preconditioners,
|
616 |
+
local_stat.diagonal_momentum,
|
617 |
+
local_stat.momentum,
|
618 |
+
)
|
619 |
+
|
620 |
+
|
621 |
+
def _convert_from_parameter_stats(parameter_stats, local_stats):
|
622 |
+
"""Creates sharded stats from paramter stats."""
|
623 |
+
return LocalShardedParameterStats(
|
624 |
+
parameter_stats.diagonal_statistics,
|
625 |
+
parameter_stats.diagonal_momentum,
|
626 |
+
parameter_stats.momentum,
|
627 |
+
local_stats.index_start,
|
628 |
+
local_stats.sizes,
|
629 |
+
)
|
630 |
+
|
631 |
+
|
632 |
+
def batch(x, num_devices):
|
633 |
+
"""Batch `x` so that so that leading axis is num_devices."""
|
634 |
+
n = len(x)
|
635 |
+
b = int(n / num_devices)
|
636 |
+
return jnp.stack([jnp.stack(x[idx : idx + b]) for idx in range(0, n, b)])
|
637 |
+
|
638 |
+
|
639 |
+
def unbatch(batched_values):
|
640 |
+
"""Unbatch values across leading axis and return a list of elements."""
|
641 |
+
b1, b2 = batched_values.shape[0], batched_values.shape[1]
|
642 |
+
results = []
|
643 |
+
for v_array in jnp.split(batched_values, indices_or_sections=b1, axis=0):
|
644 |
+
v_array = jnp.squeeze(v_array)
|
645 |
+
# b2 = batches (number of preconditioner computation) per core.
|
646 |
+
if b2 > 1:
|
647 |
+
for v in jnp.split(v_array, indices_or_sections=b2, axis=0):
|
648 |
+
results.append(jnp.squeeze(v))
|
649 |
+
else:
|
650 |
+
results.append(v_array)
|
651 |
+
return results
|
652 |
+
|
653 |
+
|
654 |
+
def distributed_shampoo(
|
655 |
+
learning_rate,
|
656 |
+
block_size,
|
657 |
+
beta1=0.9,
|
658 |
+
beta2=0.999,
|
659 |
+
diagonal_epsilon=1e-10,
|
660 |
+
matrix_epsilon=1e-6,
|
661 |
+
weight_decay=0.0,
|
662 |
+
start_preconditioning_step=5,
|
663 |
+
preconditioning_compute_steps=1,
|
664 |
+
statistics_compute_steps=1,
|
665 |
+
best_effort_shape_interpretation=True,
|
666 |
+
graft_type=GraftingType.SGD,
|
667 |
+
nesterov=True,
|
668 |
+
exponent_override=0,
|
669 |
+
# Pass pmap 'batch axis name' in pmap mode.
|
670 |
+
batch_axis_name=None,
|
671 |
+
### Only set following 3 params in pjit/spmd mode.
|
672 |
+
### WARNING: Experimental
|
673 |
+
mesh_axis_names=None,
|
674 |
+
num_devices_for_pjit=None,
|
675 |
+
shard_optimizer_states=False,
|
676 |
+
###
|
677 |
+
### Experimental memory reduction mode
|
678 |
+
best_effort_memory_usage_reduction=False,
|
679 |
+
###
|
680 |
+
inverse_failure_threshold=0.1,
|
681 |
+
moving_average_for_momentum=False,
|
682 |
+
skip_preconditioning_dim_size_gt=4096,
|
683 |
+
clip_by_scaled_gradient_norm=None,
|
684 |
+
precision=lax.Precision.HIGHEST,
|
685 |
+
):
|
686 |
+
"""Distributed Shampoo optimizer.
|
687 |
+
|
688 |
+
Distributed Shampoo is a second-order preconditioned method (concretely, a
|
689 |
+
variant of full-matrix Adagrad), that provides significant convergence and
|
690 |
+
wall-clock time improvements compared to conventional first-order methods,
|
691 |
+
and that has been shown to scale to large state-of-the-art deep learning
|
692 |
+
models.
|
693 |
+
|
694 |
+
References:
|
695 |
+
Scalable Second Order Optimization for Deep Learning,
|
696 |
+
Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer
|
697 |
+
|
698 |
+
Preprint: https://arxiv.org/abs/2002.09018
|
699 |
+
|
700 |
+
Args:
|
701 |
+
learning_rate: the step size used to update the parameters.
|
702 |
+
block_size: Block size for large layers (if > 0). Preconditioning compute
|
703 |
+
operation is cubic in the dimension of the tensor. Block size allows us to
|
704 |
+
chunk the layers into sub-layers of maximal dimension dictated by this
|
705 |
+
value. Use 128 as default (increase if you have compute budget).
|
706 |
+
beta1: momentum parameter.
|
707 |
+
beta2: second moment averaging parameter.
|
708 |
+
diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting
|
709 |
+
to AdaGrad is enabled).
|
710 |
+
matrix_epsilon: epsilon to add to statistics before computing inverse pth
|
711 |
+
root. If you are running in f32 precision for inverse pth root
|
712 |
+
(recommended today) this can go upto 1e-6. If you have latest hardware
|
713 |
+
with native f64 precision, set this upto 1e-12.
|
714 |
+
weight_decay: Weight decay for regularization.
|
715 |
+
start_preconditioning_step: When to start Shampoo update before which
|
716 |
+
diagonal update is used. This is because we dont have enough information
|
717 |
+
to do stable inverse.
|
718 |
+
preconditioning_compute_steps: How often to compute preconditioner.
|
719 |
+
Performance tuning params for controlling memory and compute requirements.
|
720 |
+
Ideally set this and statistics_compute_steps params to 1.
|
721 |
+
statistics_compute_steps: How often to compute statistics.
|
722 |
+
best_effort_shape_interpretation: If there are some small dimensions,
|
723 |
+
collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if
|
724 |
+
block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048]
|
725 |
+
graft_type: Grafting is a technique to fix the layerwise scale of Shampoo
|
726 |
+
optimizer. This allows us to plugin the Shampoo optimizer into settings
|
727 |
+
where SGD/AdaGrad is already well tuned. Available options are:
|
728 |
+
GraftingType.SGD and GraftingType.ADAGRAD.
|
729 |
+
nesterov: Nesterov momentum.
|
730 |
+
exponent_override: Override the exponent used in matrix inverse.
|
731 |
+
batch_axis_name: labeled axis over pmap for data-parallel training the
|
732 |
+
optimizer used for.
|
733 |
+
mesh_axis_names: Axis names for the mesh (used in pjit).
|
734 |
+
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
735 |
+
shard_optimizer_states: Shard optimizer states to save memory in model
|
736 |
+
parallel training.
|
737 |
+
best_effort_memory_usage_reduction: Best effort memory usage reduction.
|
738 |
+
diagonal_statistics -> jnp.bfloat16
|
739 |
+
momentum buffers (2x) -> jnp.int8
|
740 |
+
statistics, preconditioners -> jnp.int16 + diagonals
|
741 |
+
inverse_failure_threshold: numerics are hard and inverses fail sometimes; we
|
742 |
+
determine that using this threshold.
|
743 |
+
moving_average_for_momentum: Whether to use moving average for momentum
|
744 |
+
instead of exponential moving average.
|
745 |
+
skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is
|
746 |
+
greater than this value.
|
747 |
+
clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful
|
748 |
+
when using RMSProp Grafting).
|
749 |
+
precision: precision XLA related flag, the available options are: a)
|
750 |
+
lax.Precision.DEFAULT (better step time, but not precise) b)
|
751 |
+
lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST
|
752 |
+
(best possible precision, slowest)
|
753 |
+
|
754 |
+
Returns:
|
755 |
+
a GradientTransformation.
|
756 |
+
"""
|
757 |
+
|
758 |
+
def quantized_dtype_for_momentum_buffers():
|
759 |
+
return jnp.int8 if best_effort_memory_usage_reduction else jnp.float32
|
760 |
+
|
761 |
+
# TODO(rohananil): Explore int8-16 quantization with non-linear bucket sizes.
|
762 |
+
def quantized_dtype_for_diagonal_statistics_buffers():
|
763 |
+
return jnp.bfloat16 if best_effort_memory_usage_reduction else jnp.float32
|
764 |
+
|
765 |
+
# Preconditioner and statistics are both stores as int16 in this mode.
|
766 |
+
# We take out the diagonal to make quantization easier.
|
767 |
+
def quantized_dtype_for_second_moment_statistics_buffers():
|
768 |
+
return (
|
769 |
+
jnp.int16
|
770 |
+
if best_effort_memory_usage_reduction and batch_axis_name
|
771 |
+
else jnp.float32
|
772 |
+
)
|
773 |
+
|
774 |
+
# Preconditioner and statistics are both stores as int16 in this mode.
|
775 |
+
# We take out the diagonal to make quantization easier.
|
776 |
+
def quantized_dtype_for_second_moment_preconditioner_buffers():
|
777 |
+
return (
|
778 |
+
jnp.int16
|
779 |
+
if best_effort_memory_usage_reduction and batch_axis_name
|
780 |
+
else jnp.float32
|
781 |
+
)
|
782 |
+
|
783 |
+
def _to_float(maybe_quantized):
|
784 |
+
if isinstance(maybe_quantized, QuantizedValue):
|
785 |
+
return maybe_quantized.to_float()
|
786 |
+
else:
|
787 |
+
return maybe_quantized
|
788 |
+
|
789 |
+
def _maybe_quantize_statistics(statistics_list):
|
790 |
+
return _maybe_quantize_matrices_with_dtype(
|
791 |
+
statistics_list, quantized_dtype_for_second_moment_statistics_buffers()
|
792 |
+
)
|
793 |
+
|
794 |
+
def _maybe_quantize_preconditioners(statistics_list):
|
795 |
+
return _maybe_quantize_matrices_with_dtype(
|
796 |
+
statistics_list, quantized_dtype_for_second_moment_preconditioner_buffers()
|
797 |
+
)
|
798 |
+
|
799 |
+
def _maybe_quantize_matrices_with_dtype(statistics_list, quantized_dtype):
|
800 |
+
if quantized_dtype != jnp.float32:
|
801 |
+
return [
|
802 |
+
QuantizedValue.from_float_value(
|
803 |
+
s, quantized_dtype, extract_diagonal=True
|
804 |
+
)
|
805 |
+
for s in statistics_list
|
806 |
+
]
|
807 |
+
else:
|
808 |
+
return statistics_list
|
809 |
+
|
810 |
+
def _maybe_dequantize_preconditioners(preconditioner_list):
|
811 |
+
return _maybe_dequantize_matrices_with_dtype(
|
812 |
+
preconditioner_list,
|
813 |
+
quantized_dtype_for_second_moment_preconditioner_buffers(),
|
814 |
+
)
|
815 |
+
|
816 |
+
def _maybe_dequantize_matrices_with_dtype(statistics_list, quantized_dtype):
|
817 |
+
if quantized_dtype != jnp.float32:
|
818 |
+
return [s.to_float() for s in statistics_list]
|
819 |
+
else:
|
820 |
+
return statistics_list
|
821 |
+
|
822 |
+
def _quantize_diagonal_statistics(diagonal_statistics):
|
823 |
+
return QuantizedValue.from_float_value(
|
824 |
+
diagonal_statistics, quantized_dtype_for_diagonal_statistics_buffers()
|
825 |
+
)
|
826 |
+
|
827 |
+
def _quantize_momentum(momentum_statistics):
|
828 |
+
return QuantizedValue.from_float_value(
|
829 |
+
momentum_statistics, quantized_dtype_for_momentum_buffers()
|
830 |
+
)
|
831 |
+
|
832 |
+
def sharded_init_fn(params):
|
833 |
+
params_flat, treedef = jax.tree_flatten(params)
|
834 |
+
# Find max size to pad to.
|
835 |
+
max_size = 0
|
836 |
+
for param in params_flat:
|
837 |
+
preconditioner = Preconditioner(
|
838 |
+
param, block_size, best_effort_shape_interpretation
|
839 |
+
)
|
840 |
+
if not _skip_preconditioning(param):
|
841 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
842 |
+
sizes = [s[0] for s in shapes]
|
843 |
+
max_size = max(max(sizes), max_size)
|
844 |
+
|
845 |
+
padded_statistics = []
|
846 |
+
padded_preconditioners = []
|
847 |
+
local_stats_flat = []
|
848 |
+
for param in params_flat:
|
849 |
+
preconditioner = Preconditioner(
|
850 |
+
param, block_size, best_effort_shape_interpretation
|
851 |
+
)
|
852 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
853 |
+
sizes = []
|
854 |
+
|
855 |
+
statistics = []
|
856 |
+
preconditioners = []
|
857 |
+
index_start = len(padded_statistics)
|
858 |
+
if not _skip_preconditioning(param):
|
859 |
+
sizes = [s[0] for s in shapes]
|
860 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
861 |
+
statistics = [matrix_epsilon * jnp.eye(max_size) for s in shapes]
|
862 |
+
preconditioners = [jnp.eye(max_size) for s in shapes]
|
863 |
+
padded_statistics.extend(statistics)
|
864 |
+
padded_preconditioners.extend(preconditioners)
|
865 |
+
|
866 |
+
diagonal_statistics = []
|
867 |
+
if graft_type != GraftingType.SGD:
|
868 |
+
diagonal_statistics = jnp.zeros_like(param)
|
869 |
+
local_stats_flat.append(
|
870 |
+
LocalShardedParameterStats(
|
871 |
+
_quantize_diagonal_statistics(diagonal_statistics),
|
872 |
+
_quantize_momentum(jnp.zeros_like(param)),
|
873 |
+
_quantize_momentum(jnp.zeros_like(param)),
|
874 |
+
index_start,
|
875 |
+
sizes,
|
876 |
+
)
|
877 |
+
)
|
878 |
+
|
879 |
+
local_stats = jax.tree_unflatten(treedef, local_stats_flat)
|
880 |
+
# Pad the statistics and preconditioner matrices to be a multiple of
|
881 |
+
# num devices.
|
882 |
+
# TODO(rohananil): Relax to only the size of the mesh axis where the dim
|
883 |
+
# is split on.
|
884 |
+
to_pad = -len(padded_statistics) % num_devices_for_pjit
|
885 |
+
padded_statistics.extend(
|
886 |
+
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
887 |
+
)
|
888 |
+
padded_preconditioners.extend(
|
889 |
+
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
890 |
+
)
|
891 |
+
global_stats = GlobalShardedParameterStats(
|
892 |
+
jnp.stack(padded_statistics), jnp.stack(padded_preconditioners)
|
893 |
+
)
|
894 |
+
return ShampooState(
|
895 |
+
count=jnp.zeros([], jnp.int32),
|
896 |
+
stats=ShardedShampooStats(global_stats, local_stats),
|
897 |
+
)
|
898 |
+
|
899 |
+
def sharded_update_fn(grads, state, params):
|
900 |
+
"""Transform the input gradient and update all statistics in sharded mode.
|
901 |
+
|
902 |
+
Args:
|
903 |
+
grads: the gradient tensors for the parameters.
|
904 |
+
state: a named tuple containing the state of the optimizer
|
905 |
+
params: the parameters that should be updated.
|
906 |
+
|
907 |
+
Returns:
|
908 |
+
A tuple containing the new parameters and the new optimizer state.
|
909 |
+
"""
|
910 |
+
params_flat, treedef = jax.tree_flatten(params)
|
911 |
+
grads_flat = treedef.flatten_up_to(grads)
|
912 |
+
|
913 |
+
global_stats = state.stats.global_stats
|
914 |
+
local_stats_flat = treedef.flatten_up_to(state.stats.local_stats)
|
915 |
+
stats_flat = [
|
916 |
+
_convert_to_parameter_stats(global_stats, local_stat)
|
917 |
+
for local_stat in local_stats_flat
|
918 |
+
]
|
919 |
+
new_stats_flat = jax.tree_multimap(
|
920 |
+
lambda g, s, p: _compute_stats(g, s, p, state.count),
|
921 |
+
grads_flat,
|
922 |
+
stats_flat,
|
923 |
+
params_flat,
|
924 |
+
)
|
925 |
+
|
926 |
+
exponents = []
|
927 |
+
for stat, param in zip(new_stats_flat, params_flat):
|
928 |
+
num_statistics = len(stat.statistics)
|
929 |
+
if num_statistics > 0:
|
930 |
+
preconditioner = Preconditioner(
|
931 |
+
param, block_size, best_effort_shape_interpretation
|
932 |
+
)
|
933 |
+
exponent = (
|
934 |
+
preconditioner.exponent_for_preconditioner()
|
935 |
+
if exponent_override == 0
|
936 |
+
else exponent_override
|
937 |
+
)
|
938 |
+
exponents.extend([exponent] * num_statistics)
|
939 |
+
|
940 |
+
outputs = jax.tree_multimap(
|
941 |
+
lambda g, s, p: _transform_grad(g, s, p, state.count),
|
942 |
+
grads_flat,
|
943 |
+
new_stats_flat,
|
944 |
+
params_flat,
|
945 |
+
)
|
946 |
+
updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ())
|
947 |
+
|
948 |
+
updates = jax.tree_unflatten(treedef, updates_flat)
|
949 |
+
# Create new local_stats
|
950 |
+
new_local_stats_flat = [
|
951 |
+
_convert_from_parameter_stats(new_stat, local_stat)
|
952 |
+
for new_stat, local_stat in zip(new_stats_flat, local_stats_flat)
|
953 |
+
]
|
954 |
+
new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat)
|
955 |
+
|
956 |
+
max_size = global_stats.statistics.shape[1]
|
957 |
+
new_padded_statistics = []
|
958 |
+
for stat in new_stats_flat:
|
959 |
+
new_padded_statistics.extend(
|
960 |
+
[pad_matrix(stat, max_size) for stat in stat.statistics]
|
961 |
+
)
|
962 |
+
|
963 |
+
# Create global stats
|
964 |
+
# TODO(rohananil): Preconditioner is not updated every step, so cost of
|
965 |
+
# stack/pad can be obviated away.
|
966 |
+
# Pad the statistics and preconditioner matrices to be a multiple of
|
967 |
+
# num devices.
|
968 |
+
# TODO(rohananil): Relax to only the size of the mesh axis where the dim
|
969 |
+
# is split on.
|
970 |
+
to_pad = -len(new_padded_statistics) % num_devices_for_pjit
|
971 |
+
new_padded_statistics.extend(
|
972 |
+
[
|
973 |
+
jnp.eye(max_size, dtype=new_padded_statistics[0].dtype)
|
974 |
+
for _ in range(to_pad)
|
975 |
+
]
|
976 |
+
)
|
977 |
+
exponents.extend([1 for _ in range(to_pad)])
|
978 |
+
new_stacked_padded_statistics = jnp.stack(new_padded_statistics)
|
979 |
+
new_stacked_exponents = jnp.stack(exponents)
|
980 |
+
|
981 |
+
def _matrix_inverse_pth_root_vmap(xs, ps):
|
982 |
+
mi_pth_root = functools.partial(
|
983 |
+
matrix_inverse_pth_root,
|
984 |
+
ridge_epsilon=matrix_epsilon,
|
985 |
+
precision=precision,
|
986 |
+
)
|
987 |
+
preconditioners, errors = jax.vmap(mi_pth_root)(xs, ps)
|
988 |
+
return preconditioners, errors
|
989 |
+
|
990 |
+
def _internal_inverse_pth_root_all():
|
991 |
+
preconditioners, errors = _matrix_inverse_pth_root_vmap(
|
992 |
+
new_stacked_padded_statistics, new_stacked_exponents
|
993 |
+
)
|
994 |
+
return preconditioners, errors
|
995 |
+
|
996 |
+
if preconditioning_compute_steps == 1:
|
997 |
+
new_preconditioners, errors = _internal_inverse_pth_root_all()
|
998 |
+
else:
|
999 |
+
# Passing statistics instead of preconditioners as they are similarly
|
1000 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
1001 |
+
# a large init value for error.
|
1002 |
+
preconditioners_init = new_stacked_padded_statistics
|
1003 |
+
errors_init = np.stack([inverse_failure_threshold] * len(exponents))
|
1004 |
+
init_state = [preconditioners_init, errors_init]
|
1005 |
+
perform_step = state.count % preconditioning_compute_steps == 0
|
1006 |
+
new_preconditioners, errors = efficient_cond(
|
1007 |
+
perform_step, _internal_inverse_pth_root_all, init_state
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
errors = errors.reshape((-1, 1, 1))
|
1011 |
+
predicate = jnp.logical_or(
|
1012 |
+
jnp.isnan(errors), errors >= inverse_failure_threshold
|
1013 |
+
).astype(new_preconditioners.dtype)
|
1014 |
+
# TODO(rohananil): Check for numerical instabilities.
|
1015 |
+
new_conditional_preconditioners = (
|
1016 |
+
predicate * global_stats.preconditioners
|
1017 |
+
+ (1.0 - predicate) * new_preconditioners
|
1018 |
+
)
|
1019 |
+
new_global_stats = GlobalShardedParameterStats(
|
1020 |
+
new_stacked_padded_statistics, new_conditional_preconditioners
|
1021 |
+
)
|
1022 |
+
new_shampoo_state = ShampooState(
|
1023 |
+
count=state.count + 1,
|
1024 |
+
stats=ShardedShampooStats(new_global_stats, new_local_stats),
|
1025 |
+
)
|
1026 |
+
return updates, new_shampoo_state
|
1027 |
+
|
1028 |
+
def init_fn(params):
|
1029 |
+
"""Initialise the optimiser's state."""
|
1030 |
+
|
1031 |
+
def _init(param):
|
1032 |
+
preconditioner = Preconditioner(
|
1033 |
+
param, block_size, best_effort_shape_interpretation
|
1034 |
+
)
|
1035 |
+
statistics = []
|
1036 |
+
preconditioners = []
|
1037 |
+
if not _skip_preconditioning(param):
|
1038 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
1039 |
+
statistics = [matrix_epsilon * jnp.eye(s[0]) for s in shapes]
|
1040 |
+
preconditioners = [jnp.eye(s[0]) for s in shapes]
|
1041 |
+
|
1042 |
+
diagonal_statistics = []
|
1043 |
+
if graft_type != GraftingType.SGD:
|
1044 |
+
diagonal_statistics = jnp.zeros_like(param)
|
1045 |
+
return ParameterStats(
|
1046 |
+
_quantize_diagonal_statistics(diagonal_statistics),
|
1047 |
+
_maybe_quantize_statistics(statistics),
|
1048 |
+
_maybe_quantize_preconditioners(preconditioners),
|
1049 |
+
_quantize_momentum(jnp.zeros_like(param)),
|
1050 |
+
_quantize_momentum(jnp.zeros_like(param)),
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
return ShampooState(
|
1054 |
+
count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params)
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
def _skip_preconditioning(param):
|
1058 |
+
return len(param.shape) < 1 or any(
|
1059 |
+
[s > skip_preconditioning_dim_size_gt for s in param.shape]
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
def _compute_stats(grad, state, param, step):
|
1063 |
+
"""Compute per-parameter statistics."""
|
1064 |
+
preconditioner = Preconditioner(
|
1065 |
+
param, block_size, best_effort_shape_interpretation
|
1066 |
+
)
|
1067 |
+
new_statistics = [[]] * len(state.statistics)
|
1068 |
+
w1 = beta2
|
1069 |
+
w2 = beta2 if beta2 == 1.0 else (1.0 - beta2)
|
1070 |
+
if not _skip_preconditioning(param):
|
1071 |
+
|
1072 |
+
def compute_updated_statistics():
|
1073 |
+
new_stats = preconditioner.statistics_from_grad(grad)
|
1074 |
+
new_stats_accumulators = []
|
1075 |
+
for stat, stat_accumulator in zip(new_stats, state.statistics):
|
1076 |
+
new_stats_accumulators.append(
|
1077 |
+
w1 * _to_float(stat_accumulator) + w2 * stat
|
1078 |
+
)
|
1079 |
+
return _maybe_quantize_statistics(new_stats_accumulators)
|
1080 |
+
|
1081 |
+
if statistics_compute_steps > 1:
|
1082 |
+
perform_step = step % statistics_compute_steps == 0
|
1083 |
+
init_state = state.statistics
|
1084 |
+
new_statistics = list(
|
1085 |
+
efficient_cond(perform_step, compute_updated_statistics, init_state)
|
1086 |
+
)
|
1087 |
+
else:
|
1088 |
+
new_statistics = compute_updated_statistics()
|
1089 |
+
return ParameterStats(
|
1090 |
+
state.diagonal_statistics,
|
1091 |
+
new_statistics,
|
1092 |
+
state.preconditioners,
|
1093 |
+
state.diagonal_momentum,
|
1094 |
+
state.momentum,
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
def _matrix_inverse_pth_root_vmap(xs, ps):
|
1098 |
+
mi_pth_root = functools.partial(
|
1099 |
+
matrix_inverse_pth_root, ridge_epsilon=matrix_epsilon, precision=precision
|
1100 |
+
)
|
1101 |
+
return jax.vmap(mi_pth_root)(xs, ps)
|
1102 |
+
|
1103 |
+
def _quantized_matrix_inverse_pth_root_vmap(qxs, qds, qbs, ps):
|
1104 |
+
def _quantized_to_float(qx, qd, qb):
|
1105 |
+
qv = QuantizedValue(qx, qd, qb, qx.dtype, True, list(qx.shape))
|
1106 |
+
return qv.to_float()
|
1107 |
+
|
1108 |
+
def matrix_inverse_pth_root_wrapper(qx, qd, qb, p):
|
1109 |
+
v = _quantized_to_float(qx, qd, qb)
|
1110 |
+
preconditioner, error = matrix_inverse_pth_root(
|
1111 |
+
v, p, ridge_epsilon=matrix_epsilon, precision=precision
|
1112 |
+
)
|
1113 |
+
qp = QuantizedValue.from_float_value(preconditioner, qx.dtype, True)
|
1114 |
+
return qp.quantized, qp.diagonal, qp.bucket_size, error
|
1115 |
+
|
1116 |
+
return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps)
|
1117 |
+
|
1118 |
+
def _matrix_inverse_pth_root_pjit(xs, ps):
|
1119 |
+
mesh_axis_names_tuple = tuple(mesh_axis_names)
|
1120 |
+
# Partition the concatenated statistics matrix across all cores.
|
1121 |
+
partitioned_xs, partitioned_ps = pjit.pjit(
|
1122 |
+
lambda x, y: (x, y),
|
1123 |
+
in_axis_resources=None,
|
1124 |
+
out_axis_resources=pjit.PartitionSpec(
|
1125 |
+
mesh_axis_names_tuple,
|
1126 |
+
),
|
1127 |
+
)(xs, ps)
|
1128 |
+
# Run matrix inverse pth root on each shard.
|
1129 |
+
partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap(
|
1130 |
+
partitioned_xs, partitioned_ps
|
1131 |
+
)
|
1132 |
+
# Recombine the outputs at each core.
|
1133 |
+
preconditioners, errors = pjit.pjit(
|
1134 |
+
lambda x, y: (x, y),
|
1135 |
+
in_axis_resources=(
|
1136 |
+
pjit.PartitionSpec(
|
1137 |
+
mesh_axis_names_tuple,
|
1138 |
+
),
|
1139 |
+
pjit.PartitionSpec(
|
1140 |
+
mesh_axis_names_tuple,
|
1141 |
+
),
|
1142 |
+
),
|
1143 |
+
out_axis_resources=(None, None),
|
1144 |
+
)(partitioned_preconditioners, partitioned_errors)
|
1145 |
+
return preconditioners, errors
|
1146 |
+
|
1147 |
+
def _pmap_compute_preconditioners(
|
1148 |
+
states,
|
1149 |
+
step,
|
1150 |
+
statistics,
|
1151 |
+
num_statistics_per_state,
|
1152 |
+
original_shapes,
|
1153 |
+
exponents,
|
1154 |
+
max_size,
|
1155 |
+
prev_preconditioners,
|
1156 |
+
):
|
1157 |
+
"""Computes preconditioners for given statistics in states in PMAP mode.
|
1158 |
+
|
1159 |
+
Args:
|
1160 |
+
states: A list of optimizer states.
|
1161 |
+
step: Current step number
|
1162 |
+
statistics: A list of statistics for all variables (for every dim)
|
1163 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
1164 |
+
output states.
|
1165 |
+
original_shapes: A list of shapes of the statistics.
|
1166 |
+
exponents: Exponent power to use for inverse-pth roots.
|
1167 |
+
max_size: Maximum dim of the statistics to pad.
|
1168 |
+
prev_preconditioners: Previously available preconditioner.
|
1169 |
+
|
1170 |
+
Returns:
|
1171 |
+
New optimizer states after computing the preconditioner.
|
1172 |
+
"""
|
1173 |
+
num_devices = lax.psum(1, batch_axis_name)
|
1174 |
+
num_statistics = len(statistics)
|
1175 |
+
# Pad statistics and exponents to next multiple of num_devices.
|
1176 |
+
packed_statistics = [pad_matrix(stat, max_size) for stat in statistics]
|
1177 |
+
to_pad = -num_statistics % num_devices
|
1178 |
+
packed_statistics.extend(
|
1179 |
+
[jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad)]
|
1180 |
+
)
|
1181 |
+
exponents.extend([1 for _ in range(to_pad)])
|
1182 |
+
|
1183 |
+
if not packed_statistics:
|
1184 |
+
return states
|
1185 |
+
|
1186 |
+
all_statistics = batch(packed_statistics, num_devices)
|
1187 |
+
all_exponents = batch(exponents, num_devices)
|
1188 |
+
|
1189 |
+
def _internal_inverse_pth_root_all():
|
1190 |
+
current_replica = lax.axis_index(batch_axis_name)
|
1191 |
+
preconditioners, errors = _matrix_inverse_pth_root_vmap(
|
1192 |
+
all_statistics[current_replica], all_exponents[current_replica]
|
1193 |
+
)
|
1194 |
+
preconditioners = jax.lax.all_gather(preconditioners, batch_axis_name)
|
1195 |
+
errors = jax.lax.all_gather(errors, batch_axis_name)
|
1196 |
+
preconditioners_flat = unbatch(preconditioners)
|
1197 |
+
errors_flat = unbatch(errors)
|
1198 |
+
return preconditioners_flat, errors_flat
|
1199 |
+
|
1200 |
+
if preconditioning_compute_steps == 1:
|
1201 |
+
preconditioners_flat, errors_flat = _internal_inverse_pth_root_all()
|
1202 |
+
else:
|
1203 |
+
# Passing statistics instead of preconditioners as they are similarly
|
1204 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
1205 |
+
# a large init value for error.
|
1206 |
+
preconditioners_init = packed_statistics
|
1207 |
+
errors_init = [inverse_failure_threshold] * len(packed_statistics)
|
1208 |
+
init_state = [preconditioners_init, errors_init]
|
1209 |
+
perform_step = step % preconditioning_compute_steps == 0
|
1210 |
+
preconditioners_flat, errors_flat = efficient_cond(
|
1211 |
+
perform_step, _internal_inverse_pth_root_all, init_state
|
1212 |
+
)
|
1213 |
+
|
1214 |
+
def _skip(error):
|
1215 |
+
condition = jnp.logical_or(
|
1216 |
+
jnp.isnan(error), error >= inverse_failure_threshold
|
1217 |
+
)
|
1218 |
+
return condition.astype(error.dtype)
|
1219 |
+
|
1220 |
+
def _select_preconditioner(error, new_p, old_p):
|
1221 |
+
return lax.cond(
|
1222 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None
|
1223 |
+
)
|
1224 |
+
|
1225 |
+
new_preconditioners_flat = []
|
1226 |
+
for p, shape, prev_p, error in zip(
|
1227 |
+
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
1228 |
+
):
|
1229 |
+
new_preconditioners_flat.append(
|
1230 |
+
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
1231 |
+
)
|
1232 |
+
|
1233 |
+
assert len(states) == len(num_statistics_per_state)
|
1234 |
+
assert len(new_preconditioners_flat) == num_statistics
|
1235 |
+
|
1236 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
1237 |
+
preconditioners_for_states = []
|
1238 |
+
idx = 0
|
1239 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
1240 |
+
if num_statistics == 0:
|
1241 |
+
preconditioners_for_states.append([])
|
1242 |
+
else:
|
1243 |
+
preconditioners_for_state = new_preconditioners_flat[
|
1244 |
+
idx : idx + num_statistics
|
1245 |
+
]
|
1246 |
+
assert len(state.statistics) == len(preconditioners_for_state)
|
1247 |
+
preconditioners_for_states.append(preconditioners_for_state)
|
1248 |
+
idx += num_statistics
|
1249 |
+
new_states = []
|
1250 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
1251 |
+
new_states.append(
|
1252 |
+
ParameterStats(
|
1253 |
+
state.diagonal_statistics,
|
1254 |
+
state.statistics,
|
1255 |
+
new_preconditioners,
|
1256 |
+
state.diagonal_momentum,
|
1257 |
+
state.momentum,
|
1258 |
+
)
|
1259 |
+
)
|
1260 |
+
|
1261 |
+
return new_states
|
1262 |
+
|
1263 |
+
def _pmap_quantized_compute_preconditioners(
|
1264 |
+
states,
|
1265 |
+
step,
|
1266 |
+
statistics,
|
1267 |
+
num_statistics_per_state,
|
1268 |
+
original_shapes,
|
1269 |
+
exponents,
|
1270 |
+
max_size,
|
1271 |
+
prev_preconditioners,
|
1272 |
+
):
|
1273 |
+
"""Computes preconditioners for given statistics in states in PMAP mode.
|
1274 |
+
|
1275 |
+
For quantization, each statistic is represented by three values:
|
1276 |
+
quantized matrix, diagonal, and bucket sizes, we run inverse pth-roots
|
1277 |
+
without ever recreating the original matrix in f32.
|
1278 |
+
|
1279 |
+
Args:
|
1280 |
+
states: A list of optimizer states.
|
1281 |
+
step: Current step number
|
1282 |
+
statistics: A list of statistics for all variables (for every dim)
|
1283 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
1284 |
+
output states.
|
1285 |
+
original_shapes: A list of shapes of the statistics.
|
1286 |
+
exponents: Exponent power to use for inverse-pth roots.
|
1287 |
+
max_size: Maximum dim of the statistics to pad.
|
1288 |
+
prev_preconditioners: Previously available preconditioner.
|
1289 |
+
|
1290 |
+
Returns:
|
1291 |
+
New optimizer states after computing the preconditioner.
|
1292 |
+
"""
|
1293 |
+
num_devices = lax.psum(1, batch_axis_name)
|
1294 |
+
num_statistics = len(statistics)
|
1295 |
+
quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers()
|
1296 |
+
# Complexity here is around: shapes needing be statically shaped,
|
1297 |
+
# our custom quantization type requires a different type of packing.
|
1298 |
+
|
1299 |
+
# Parallel tensors:
|
1300 |
+
# quantized [dxd]
|
1301 |
+
# diagonals [d] f32
|
1302 |
+
# bucket_sizes [d] f32
|
1303 |
+
packed_quantized_statistics = [
|
1304 |
+
pad_matrix(stat.quantized, max_size) for stat in statistics
|
1305 |
+
]
|
1306 |
+
packed_quantized_diagonals = [
|
1307 |
+
pad_vector(stat.diagonal, max_size) for stat in statistics
|
1308 |
+
]
|
1309 |
+
packed_quantized_bucket_sizes = [
|
1310 |
+
pad_vector(stat.bucket_size, max_size) for stat in statistics
|
1311 |
+
]
|
1312 |
+
|
1313 |
+
to_pad = -num_statistics % num_devices
|
1314 |
+
padded_eye = jnp.eye(max_size, dtype=jnp.float32)
|
1315 |
+
quantized_eye = QuantizedValue.from_float_value(
|
1316 |
+
padded_eye, quantized_dtype, True
|
1317 |
+
)
|
1318 |
+
packed_quantized_statistics.extend(
|
1319 |
+
[quantized_eye.quantized for _ in range(to_pad)]
|
1320 |
+
)
|
1321 |
+
packed_quantized_diagonals.extend(
|
1322 |
+
[quantized_eye.diagonal for _ in range(to_pad)]
|
1323 |
+
)
|
1324 |
+
packed_quantized_bucket_sizes.extend(
|
1325 |
+
[quantized_eye.bucket_size for _ in range(to_pad)]
|
1326 |
+
)
|
1327 |
+
exponents.extend([1 for _ in range(to_pad)])
|
1328 |
+
|
1329 |
+
if not packed_quantized_statistics:
|
1330 |
+
return states
|
1331 |
+
|
1332 |
+
all_quantized_statistics = batch(packed_quantized_statistics, num_devices)
|
1333 |
+
all_quantized_diagonals = batch(packed_quantized_diagonals, num_devices)
|
1334 |
+
all_quantized_bucket_sizes = batch(packed_quantized_bucket_sizes, num_devices)
|
1335 |
+
all_exponents = batch(exponents, num_devices)
|
1336 |
+
|
1337 |
+
def _internal_inverse_pth_root_all():
|
1338 |
+
current_replica = lax.axis_index(batch_axis_name)
|
1339 |
+
(
|
1340 |
+
quantized_preconditioners,
|
1341 |
+
quantized_diagonals,
|
1342 |
+
quantized_bucket_sizes,
|
1343 |
+
errors,
|
1344 |
+
) = _quantized_matrix_inverse_pth_root_vmap(
|
1345 |
+
all_quantized_statistics[current_replica],
|
1346 |
+
all_quantized_diagonals[current_replica],
|
1347 |
+
all_quantized_bucket_sizes[current_replica],
|
1348 |
+
all_exponents[current_replica],
|
1349 |
+
)
|
1350 |
+
quantized_preconditioners = jax.lax.all_gather(
|
1351 |
+
quantized_preconditioners, batch_axis_name
|
1352 |
+
)
|
1353 |
+
quantized_diagonals = jax.lax.all_gather(
|
1354 |
+
quantized_diagonals, batch_axis_name
|
1355 |
+
)
|
1356 |
+
quantized_bucket_sizes = jax.lax.all_gather(
|
1357 |
+
quantized_bucket_sizes, batch_axis_name
|
1358 |
+
)
|
1359 |
+
errors = jax.lax.all_gather(errors, batch_axis_name)
|
1360 |
+
quantized_preconditioners_flat = unbatch(quantized_preconditioners)
|
1361 |
+
quantized_diagonals_flat = unbatch(quantized_diagonals)
|
1362 |
+
quantized_bucket_sizes_flat = unbatch(quantized_bucket_sizes)
|
1363 |
+
errors_flat = unbatch(errors)
|
1364 |
+
return (
|
1365 |
+
quantized_preconditioners_flat,
|
1366 |
+
quantized_diagonals_flat,
|
1367 |
+
quantized_bucket_sizes_flat,
|
1368 |
+
errors_flat,
|
1369 |
+
)
|
1370 |
+
|
1371 |
+
if preconditioning_compute_steps == 1:
|
1372 |
+
(
|
1373 |
+
quantized_preconditioners_flat,
|
1374 |
+
quantized_diagonals_flat,
|
1375 |
+
quantized_bucket_sizes_flat,
|
1376 |
+
errors_flat,
|
1377 |
+
) = _internal_inverse_pth_root_all()
|
1378 |
+
else:
|
1379 |
+
# Passing statistics instead of preconditioners as they are similarly
|
1380 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
1381 |
+
# a large init value for error.
|
1382 |
+
quantized_preconditioners_init = packed_quantized_statistics
|
1383 |
+
quantized_diagonals_init = packed_quantized_diagonals
|
1384 |
+
quantized_bucket_sizes_init = packed_quantized_bucket_sizes
|
1385 |
+
errors_init = [inverse_failure_threshold] * len(
|
1386 |
+
quantized_preconditioners_init
|
1387 |
+
)
|
1388 |
+
init_state = [
|
1389 |
+
quantized_preconditioners_init,
|
1390 |
+
quantized_diagonals_init,
|
1391 |
+
quantized_bucket_sizes_init,
|
1392 |
+
errors_init,
|
1393 |
+
]
|
1394 |
+
perform_step = step % preconditioning_compute_steps == 0
|
1395 |
+
(
|
1396 |
+
quantized_preconditioners_flat,
|
1397 |
+
quantized_diagonals_flat,
|
1398 |
+
quantized_bucket_sizes_flat,
|
1399 |
+
errors_flat,
|
1400 |
+
) = efficient_cond(perform_step, _internal_inverse_pth_root_all, init_state)
|
1401 |
+
|
1402 |
+
def _skip(error):
|
1403 |
+
condition = jnp.logical_or(
|
1404 |
+
jnp.isnan(error), error >= inverse_failure_threshold
|
1405 |
+
)
|
1406 |
+
return condition.astype(error.dtype)
|
1407 |
+
|
1408 |
+
def _select_preconditioner(error, new_p, old_p):
|
1409 |
+
return lax.cond(
|
1410 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None
|
1411 |
+
)
|
1412 |
+
|
1413 |
+
new_quantized_preconditioners_flat = []
|
1414 |
+
new_quantized_diagonals_flat = []
|
1415 |
+
new_quantized_bucket_sizes_flat = []
|
1416 |
+
for p, d, b, shape, prev_p, error in zip(
|
1417 |
+
quantized_preconditioners_flat,
|
1418 |
+
quantized_diagonals_flat,
|
1419 |
+
quantized_bucket_sizes_flat,
|
1420 |
+
original_shapes,
|
1421 |
+
prev_preconditioners,
|
1422 |
+
errors_flat,
|
1423 |
+
):
|
1424 |
+
new_quantized_preconditioners_flat.append(
|
1425 |
+
_select_preconditioner(
|
1426 |
+
error, p[: shape[0], : shape[1]], prev_p.quantized
|
1427 |
+
)
|
1428 |
+
)
|
1429 |
+
new_quantized_diagonals_flat.append(
|
1430 |
+
_select_preconditioner(error, d[: shape[0]], prev_p.diagonal)
|
1431 |
+
)
|
1432 |
+
new_quantized_bucket_sizes_flat.append(
|
1433 |
+
_select_preconditioner(error, b[: shape[0]], prev_p.bucket_size)
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
assert len(states) == len(num_statistics_per_state)
|
1437 |
+
assert len(new_quantized_preconditioners_flat) == num_statistics
|
1438 |
+
assert len(new_quantized_diagonals_flat) == num_statistics
|
1439 |
+
assert len(new_quantized_bucket_sizes_flat) == num_statistics
|
1440 |
+
|
1441 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
1442 |
+
preconditioners_for_states = []
|
1443 |
+
idx = 0
|
1444 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
1445 |
+
if num_statistics == 0:
|
1446 |
+
preconditioners_for_states.append([])
|
1447 |
+
else:
|
1448 |
+
quantized_preconditioners_for_state = (
|
1449 |
+
new_quantized_preconditioners_flat[idx : idx + num_statistics]
|
1450 |
+
)
|
1451 |
+
quantized_diagonals_for_state = new_quantized_diagonals_flat[
|
1452 |
+
idx : idx + num_statistics
|
1453 |
+
]
|
1454 |
+
quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[
|
1455 |
+
idx : idx + num_statistics
|
1456 |
+
]
|
1457 |
+
|
1458 |
+
assert len(state.statistics) == len(quantized_preconditioners_for_state)
|
1459 |
+
assert len(state.statistics) == len(quantized_diagonals_for_state)
|
1460 |
+
assert len(state.statistics) == len(quantized_bucket_sizes_for_state)
|
1461 |
+
|
1462 |
+
quantized_preconditioners = []
|
1463 |
+
for qv, qd, qb in zip(
|
1464 |
+
quantized_preconditioners_for_state,
|
1465 |
+
quantized_diagonals_for_state,
|
1466 |
+
quantized_bucket_sizes_for_state,
|
1467 |
+
):
|
1468 |
+
quantized_preconditioners.append(
|
1469 |
+
QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape))
|
1470 |
+
)
|
1471 |
+
preconditioners_for_states.append(quantized_preconditioners)
|
1472 |
+
idx += num_statistics
|
1473 |
+
new_states = []
|
1474 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
1475 |
+
new_states.append(
|
1476 |
+
ParameterStats(
|
1477 |
+
state.diagonal_statistics,
|
1478 |
+
state.statistics,
|
1479 |
+
new_preconditioners,
|
1480 |
+
state.diagonal_momentum,
|
1481 |
+
state.momentum,
|
1482 |
+
)
|
1483 |
+
)
|
1484 |
+
|
1485 |
+
return new_states
|
1486 |
+
|
1487 |
+
def _pjit_compute_preconditioners(
|
1488 |
+
states,
|
1489 |
+
step,
|
1490 |
+
statistics,
|
1491 |
+
num_statistics_per_state,
|
1492 |
+
original_shapes,
|
1493 |
+
exponents,
|
1494 |
+
max_size,
|
1495 |
+
prev_preconditioners,
|
1496 |
+
):
|
1497 |
+
"""Computes preconditioners for given statistics in states in PJIT mode.
|
1498 |
+
|
1499 |
+
Args:
|
1500 |
+
states: A list of optimizer states.
|
1501 |
+
step: Current step number
|
1502 |
+
statistics: A list of statistics for all variables (for every dim)
|
1503 |
+
num_statistics_per_state: Number of statistis per state to reconstruct
|
1504 |
+
output states.
|
1505 |
+
original_shapes: A list of shapes of the statistics.
|
1506 |
+
exponents: Exponent power to use for inverse-pth roots.
|
1507 |
+
max_size: Maximum dim of the statistics to pad.
|
1508 |
+
prev_preconditioners: Previously available preconditioner.
|
1509 |
+
|
1510 |
+
Returns:
|
1511 |
+
New optimizer states after computing the preconditioner.
|
1512 |
+
"""
|
1513 |
+
num_statistics = len(statistics)
|
1514 |
+
to_pad = -num_statistics % num_devices_for_pjit
|
1515 |
+
padded_statistics = [pad_matrix(stat, max_size) for stat in statistics]
|
1516 |
+
padded_statistics.extend(
|
1517 |
+
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
1518 |
+
)
|
1519 |
+
exponents.extend([1 for _ in range(to_pad)])
|
1520 |
+
all_statistics = jnp.stack(padded_statistics)
|
1521 |
+
all_exponents = jnp.stack(exponents)
|
1522 |
+
|
1523 |
+
def _internal_inverse_pth_root_all():
|
1524 |
+
preconditioners, errors = _matrix_inverse_pth_root_pjit(
|
1525 |
+
all_statistics, all_exponents
|
1526 |
+
)
|
1527 |
+
b1 = preconditioners.shape[0]
|
1528 |
+
|
1529 |
+
def split(batched_values):
|
1530 |
+
return [
|
1531 |
+
jnp.squeeze(v)
|
1532 |
+
for v in jnp.split(batched_values, indices_or_sections=b1, axis=0)
|
1533 |
+
]
|
1534 |
+
|
1535 |
+
return split(preconditioners), split(errors)
|
1536 |
+
|
1537 |
+
if preconditioning_compute_steps == 1:
|
1538 |
+
preconditioners_flat, errors_flat = _internal_inverse_pth_root_all()
|
1539 |
+
else:
|
1540 |
+
# Passing statistics instead of preconditioners as they are similarly
|
1541 |
+
# shaped tensors. Note statistics will be ignored as we are passing in
|
1542 |
+
# a large init value for error.
|
1543 |
+
preconditioners_init = padded_statistics
|
1544 |
+
errors_init = [inverse_failure_threshold] * len(padded_statistics)
|
1545 |
+
init_state = [preconditioners_init, errors_init]
|
1546 |
+
perform_step = step % preconditioning_compute_steps == 0
|
1547 |
+
preconditioners_flat, errors_flat = efficient_cond(
|
1548 |
+
perform_step, _internal_inverse_pth_root_all, init_state
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
def _skip(error):
|
1552 |
+
condition = jnp.logical_or(
|
1553 |
+
jnp.isnan(error), error >= inverse_failure_threshold
|
1554 |
+
)
|
1555 |
+
return condition.astype(error.dtype)
|
1556 |
+
|
1557 |
+
def _select_preconditioner(error, new_p, old_p):
|
1558 |
+
return lax.cond(
|
1559 |
+
_skip(error), lambda _: old_p, lambda _: new_p, operand=None
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
new_preconditioners_flat = []
|
1563 |
+
for p, shape, prev_p, error in zip(
|
1564 |
+
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
1565 |
+
):
|
1566 |
+
new_preconditioners_flat.append(
|
1567 |
+
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
1568 |
+
)
|
1569 |
+
|
1570 |
+
assert len(states) == len(num_statistics_per_state)
|
1571 |
+
assert len(new_preconditioners_flat) == num_statistics
|
1572 |
+
|
1573 |
+
# Add back empty preconditioners so we that we can set the optimizer state.
|
1574 |
+
preconditioners_for_states = []
|
1575 |
+
idx = 0
|
1576 |
+
for num_statistics, state in zip(num_statistics_per_state, states):
|
1577 |
+
if num_statistics == 0:
|
1578 |
+
preconditioners_for_states.append([])
|
1579 |
+
else:
|
1580 |
+
preconditioners_for_state = new_preconditioners_flat[
|
1581 |
+
idx : idx + num_statistics
|
1582 |
+
]
|
1583 |
+
assert len(state.statistics) == len(preconditioners_for_state)
|
1584 |
+
preconditioners_for_states.append(preconditioners_for_state)
|
1585 |
+
idx += num_statistics
|
1586 |
+
new_states = []
|
1587 |
+
for state, new_preconditioners in zip(states, preconditioners_for_states):
|
1588 |
+
new_states.append(
|
1589 |
+
ParameterStats(
|
1590 |
+
state.diagonal_statistics,
|
1591 |
+
state.statistics,
|
1592 |
+
new_preconditioners,
|
1593 |
+
state.diagonal_momentum,
|
1594 |
+
state.momentum,
|
1595 |
+
)
|
1596 |
+
)
|
1597 |
+
|
1598 |
+
return new_states
|
1599 |
+
|
1600 |
+
def _compute_preconditioners(states, params, step):
|
1601 |
+
"""Computes preconditioners for given statistics in states.
|
1602 |
+
|
1603 |
+
Args:
|
1604 |
+
states: A list of optimizer states.
|
1605 |
+
params: A list of params.
|
1606 |
+
step: Current step number
|
1607 |
+
|
1608 |
+
Returns:
|
1609 |
+
New optimizer states after computing the preconditioner.
|
1610 |
+
"""
|
1611 |
+
statistics = []
|
1612 |
+
num_statistics_per_state = []
|
1613 |
+
original_shapes = []
|
1614 |
+
exponents = []
|
1615 |
+
max_size = 0
|
1616 |
+
prev_preconditioners = []
|
1617 |
+
|
1618 |
+
for state, param in zip(states, params):
|
1619 |
+
num_statistics = len(state.statistics)
|
1620 |
+
num_statistics_per_state.append(num_statistics)
|
1621 |
+
original_shapes_for_state = []
|
1622 |
+
if num_statistics > 0:
|
1623 |
+
preconditioner = Preconditioner(
|
1624 |
+
param, block_size, best_effort_shape_interpretation
|
1625 |
+
)
|
1626 |
+
for statistic in state.statistics:
|
1627 |
+
exponents.append(
|
1628 |
+
preconditioner.exponent_for_preconditioner()
|
1629 |
+
if exponent_override == 0
|
1630 |
+
else exponent_override
|
1631 |
+
)
|
1632 |
+
original_shapes_for_state.append(statistic.shape)
|
1633 |
+
max_size = max(max_size, statistic.shape[0])
|
1634 |
+
|
1635 |
+
statistics.extend(state.statistics)
|
1636 |
+
prev_preconditioners.extend(state.preconditioners)
|
1637 |
+
original_shapes.extend(original_shapes_for_state)
|
1638 |
+
|
1639 |
+
if batch_axis_name:
|
1640 |
+
# Quantization is only enabled if batch_axis_name is not set.
|
1641 |
+
quantized_dtype = quantized_dtype_for_second_moment_statistics_buffers()
|
1642 |
+
|
1643 |
+
if quantized_dtype == jnp.float32:
|
1644 |
+
return _pmap_compute_preconditioners(
|
1645 |
+
states,
|
1646 |
+
step,
|
1647 |
+
statistics,
|
1648 |
+
num_statistics_per_state,
|
1649 |
+
original_shapes,
|
1650 |
+
exponents,
|
1651 |
+
max_size,
|
1652 |
+
prev_preconditioners,
|
1653 |
+
)
|
1654 |
+
else:
|
1655 |
+
return _pmap_quantized_compute_preconditioners(
|
1656 |
+
states,
|
1657 |
+
step,
|
1658 |
+
statistics,
|
1659 |
+
num_statistics_per_state,
|
1660 |
+
original_shapes,
|
1661 |
+
exponents,
|
1662 |
+
max_size,
|
1663 |
+
prev_preconditioners,
|
1664 |
+
)
|
1665 |
+
|
1666 |
+
else:
|
1667 |
+
return _pjit_compute_preconditioners(
|
1668 |
+
states,
|
1669 |
+
step,
|
1670 |
+
statistics,
|
1671 |
+
num_statistics_per_state,
|
1672 |
+
original_shapes,
|
1673 |
+
exponents,
|
1674 |
+
max_size,
|
1675 |
+
prev_preconditioners,
|
1676 |
+
)
|
1677 |
+
|
1678 |
+
def _transform_grad(grad, state, param, step):
|
1679 |
+
"""Transform per-parameter gradients."""
|
1680 |
+
preconditioner = Preconditioner(
|
1681 |
+
param, block_size, best_effort_shape_interpretation
|
1682 |
+
)
|
1683 |
+
sgd_update = grad
|
1684 |
+
new_diagonal_statistics = state.diagonal_statistics.to_float()
|
1685 |
+
if graft_type == GraftingType.ADAGRAD:
|
1686 |
+
new_diagonal_statistics = state.diagonal_statistics.to_float() + jnp.square(
|
1687 |
+
grad
|
1688 |
+
)
|
1689 |
+
adagrad_update = grad / (
|
1690 |
+
jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon
|
1691 |
+
)
|
1692 |
+
grafting_update = adagrad_update
|
1693 |
+
elif (
|
1694 |
+
graft_type == GraftingType.RMSPROP
|
1695 |
+
or graft_type == GraftingType.RMSPROP_NORMALIZED
|
1696 |
+
):
|
1697 |
+
|
1698 |
+
scaled_grad = grad
|
1699 |
+
if graft_type == GraftingType.RMSPROP_NORMALIZED:
|
1700 |
+
scaled_grad = grad / jnp.linalg.norm(grad)
|
1701 |
+
|
1702 |
+
w1 = beta2
|
1703 |
+
w2 = beta2 if beta2 == 1.0 else (1.0 - beta2)
|
1704 |
+
|
1705 |
+
new_diagonal_statistics = (
|
1706 |
+
w1 * state.diagonal_statistics.to_float() + w2 * jnp.square(scaled_grad)
|
1707 |
+
)
|
1708 |
+
rmsprop_update = scaled_grad / (
|
1709 |
+
jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon
|
1710 |
+
)
|
1711 |
+
|
1712 |
+
if clip_by_scaled_gradient_norm:
|
1713 |
+
scaled_grad_norm = jnp.linalg.norm(rmsprop_update) / (
|
1714 |
+
jnp.sqrt(float(rmsprop_update.size))
|
1715 |
+
)
|
1716 |
+
clipping_denom = jnp.maximum(
|
1717 |
+
1.0, scaled_grad_norm / clip_by_scaled_gradient_norm
|
1718 |
+
)
|
1719 |
+
rmsprop_update /= clipping_denom
|
1720 |
+
|
1721 |
+
grafting_update = rmsprop_update
|
1722 |
+
else:
|
1723 |
+
grafting_update = sgd_update
|
1724 |
+
|
1725 |
+
precond_grad = grad
|
1726 |
+
if not _skip_preconditioning(param):
|
1727 |
+
precond_grad = preconditioner.preconditioned_grad(
|
1728 |
+
precond_grad, _maybe_dequantize_preconditioners(state.preconditioners)
|
1729 |
+
)
|
1730 |
+
else:
|
1731 |
+
precond_grad = grafting_update
|
1732 |
+
|
1733 |
+
grafting_update_norm = jnp.linalg.norm(grafting_update)
|
1734 |
+
precond_grad_norm = jnp.linalg.norm(precond_grad)
|
1735 |
+
|
1736 |
+
multiplier = grafting_update_norm / (precond_grad_norm + 1e-16)
|
1737 |
+
shampoo_update = precond_grad * multiplier
|
1738 |
+
|
1739 |
+
shampoo_update_with_wd = shampoo_update
|
1740 |
+
grafting_update_with_wd = grafting_update
|
1741 |
+
if weight_decay != 0:
|
1742 |
+
shampoo_update_with_wd = shampoo_update + weight_decay * param
|
1743 |
+
grafting_update_with_wd = grafting_update + weight_decay * param
|
1744 |
+
|
1745 |
+
w = (1.0 - beta1) if moving_average_for_momentum else 1.0
|
1746 |
+
shampoo_update_with_wd_momentum = (
|
1747 |
+
state.momentum.to_float() * beta1 + w * shampoo_update_with_wd
|
1748 |
+
)
|
1749 |
+
grafting_update_with_wd_momentum = (
|
1750 |
+
state.diagonal_momentum.to_float() * beta1 + w * grafting_update_with_wd
|
1751 |
+
)
|
1752 |
+
|
1753 |
+
run_shampoo = (step >= start_preconditioning_step).astype(
|
1754 |
+
grafting_update_with_wd_momentum.dtype
|
1755 |
+
)
|
1756 |
+
|
1757 |
+
momentum_update = (
|
1758 |
+
run_shampoo * shampoo_update_with_wd_momentum
|
1759 |
+
+ (1.0 - run_shampoo) * grafting_update_with_wd_momentum
|
1760 |
+
)
|
1761 |
+
|
1762 |
+
wd_update = (
|
1763 |
+
run_shampoo * shampoo_update_with_wd
|
1764 |
+
+ (1.0 - run_shampoo) * grafting_update_with_wd
|
1765 |
+
)
|
1766 |
+
|
1767 |
+
if nesterov:
|
1768 |
+
momentum_update = w * wd_update + beta1 * momentum_update
|
1769 |
+
|
1770 |
+
lr = learning_rate
|
1771 |
+
if callable(learning_rate):
|
1772 |
+
lr = learning_rate(step)
|
1773 |
+
transformed_update = -1.0 * lr * momentum_update
|
1774 |
+
|
1775 |
+
param_stats = ParameterStats(
|
1776 |
+
_quantize_diagonal_statistics(new_diagonal_statistics),
|
1777 |
+
state.statistics,
|
1778 |
+
state.preconditioners,
|
1779 |
+
_quantize_momentum(grafting_update_with_wd_momentum),
|
1780 |
+
_quantize_momentum(shampoo_update_with_wd_momentum),
|
1781 |
+
)
|
1782 |
+
return transformed_update, param_stats
|
1783 |
+
|
1784 |
+
def update_fn(grads, state, params):
|
1785 |
+
"""Transform the input gradient and update all statistics.
|
1786 |
+
|
1787 |
+
Args:
|
1788 |
+
grads: the gradient tensors for the parameters.
|
1789 |
+
state: a named tuple containing the state of the optimizer
|
1790 |
+
params: the parameters that should be updated.
|
1791 |
+
|
1792 |
+
Returns:
|
1793 |
+
A tuple containing the new parameters and the new optimizer state.
|
1794 |
+
"""
|
1795 |
+
params_flat, treedef = jax.tree_flatten(params)
|
1796 |
+
stats_flat = treedef.flatten_up_to(state.stats)
|
1797 |
+
grads_flat = treedef.flatten_up_to(grads)
|
1798 |
+
|
1799 |
+
new_stats_flat = jax.tree_multimap(
|
1800 |
+
lambda g, s, p: _compute_stats(g, s, p, state.count),
|
1801 |
+
grads_flat,
|
1802 |
+
stats_flat,
|
1803 |
+
params_flat,
|
1804 |
+
)
|
1805 |
+
new_stats_flat = _compute_preconditioners(
|
1806 |
+
new_stats_flat, params_flat, state.count
|
1807 |
+
)
|
1808 |
+
|
1809 |
+
outputs = jax.tree_multimap(
|
1810 |
+
lambda g, s, p: _transform_grad(g, s, p, state.count),
|
1811 |
+
grads_flat,
|
1812 |
+
new_stats_flat,
|
1813 |
+
params_flat,
|
1814 |
+
)
|
1815 |
+
updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ())
|
1816 |
+
|
1817 |
+
updates = jax.tree_unflatten(treedef, updates_flat)
|
1818 |
+
new_stats = jax.tree_unflatten(treedef, new_stats_flat)
|
1819 |
+
|
1820 |
+
new_state = ShampooState(count=state.count + 1, stats=new_stats)
|
1821 |
+
return updates, new_state
|
1822 |
+
|
1823 |
+
if shard_optimizer_states:
|
1824 |
+
return optax.GradientTransformation(sharded_init_fn, sharded_update_fn)
|
1825 |
+
else:
|
1826 |
+
return optax.GradientTransformation(init_fn, update_fn)
|
tools/train/sweep.yaml
CHANGED
@@ -11,44 +11,39 @@ parameters:
|
|
11 |
# from exp(min) to exp(max)
|
12 |
min: -6.9
|
13 |
max: -3.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
gradient_accumulation_steps:
|
15 |
-
value:
|
16 |
warmup_steps:
|
17 |
value: 4000
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
command:
|
20 |
- python3
|
21 |
- ${program}
|
22 |
-
- "--tokenizer_name"
|
23 |
-
- "boris/dalle-mini-tokenizer"
|
24 |
-
- "--config_name"
|
25 |
-
- "facebook/bart-large-cnn"
|
26 |
-
- "--dataset_repo_or_path"
|
27 |
-
- "boris/gis_vqgan_f16_16384"
|
28 |
- "--streaming"
|
29 |
-
- "--use_auth_token"
|
30 |
-
- "--image_vocab_size"
|
31 |
-
- 16384
|
32 |
-
- "--image_length"
|
33 |
-
- 256
|
34 |
-
- "--normalize_text"
|
35 |
-
- True
|
36 |
-
- "--per_device_train_batch_size"
|
37 |
-
- 56
|
38 |
-
- "--per_device_eval_batch_size"
|
39 |
-
- 56
|
40 |
-
- "--adafactor"
|
41 |
-
- "--do_train"
|
42 |
-
- "--do_eval"
|
43 |
-
- "--num_train_epochs"
|
44 |
-
- 1
|
45 |
-
- "--logging_steps"
|
46 |
-
- 40
|
47 |
-
- "--eval_steps"
|
48 |
-
- 800
|
49 |
- "--output_dir"
|
50 |
- "./output"
|
51 |
- "--overwrite_output_dir"
|
52 |
-
- "--
|
53 |
-
-
|
|
|
54 |
- ${args}
|
|
|
11 |
# from exp(min) to exp(max)
|
12 |
min: -6.9
|
13 |
max: -3.5
|
14 |
+
tokenizer_name:
|
15 |
+
value: boris/dalle-mini-tokenizer
|
16 |
+
config_name:
|
17 |
+
value: ./config/mini
|
18 |
+
dtype:
|
19 |
+
value: bfloat16
|
20 |
+
dataset_repo_or_path:
|
21 |
+
value: ./data
|
22 |
+
per_device_train_batch_size:
|
23 |
+
value: 64
|
24 |
+
per_device_eval_batch_size:
|
25 |
+
value: 64
|
26 |
gradient_accumulation_steps:
|
27 |
+
value: 1
|
28 |
warmup_steps:
|
29 |
value: 4000
|
30 |
+
num_train_epochs:
|
31 |
+
value: 1
|
32 |
+
logging_steps:
|
33 |
+
value: 32
|
34 |
+
eval_steps:
|
35 |
+
value: 800
|
36 |
+
max_train_samples:
|
37 |
+
value: 1000000
|
38 |
+
|
39 |
command:
|
40 |
- python3
|
41 |
- ${program}
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
- "--streaming"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
- "--output_dir"
|
44 |
- "./output"
|
45 |
- "--overwrite_output_dir"
|
46 |
+
- "--adafactor"
|
47 |
+
- "--do_train"
|
48 |
+
- "--do_eval"
|
49 |
- ${args}
|
tools/train/train.py
CHANGED
@@ -34,6 +34,7 @@ import optax
|
|
34 |
import transformers
|
35 |
import wandb
|
36 |
from datasets import Dataset
|
|
|
37 |
from flax import jax_utils, traverse_util
|
38 |
from flax.jax_utils import unreplicate
|
39 |
from flax.serialization import from_bytes, to_bytes
|
@@ -41,10 +42,9 @@ from flax.training import train_state
|
|
41 |
from flax.training.common_utils import get_metrics, onehot, shard_prng_key
|
42 |
from tqdm import tqdm
|
43 |
from transformers import AutoTokenizer, HfArgumentParser
|
44 |
-
from transformers.models.bart.modeling_flax_bart import BartConfig
|
45 |
|
46 |
from dalle_mini.data import Dataset
|
47 |
-
from dalle_mini.model import
|
48 |
|
49 |
logger = logging.getLogger(__name__)
|
50 |
|
@@ -68,26 +68,12 @@ class ModelArguments:
|
|
68 |
"help": "Pretrained config name or path if not the same as model_name"
|
69 |
},
|
70 |
)
|
71 |
-
image_vocab_size: Optional[int] = field(
|
72 |
-
default=None,
|
73 |
-
metadata={"help": "Vocab size of image encoder"},
|
74 |
-
)
|
75 |
-
image_length: Optional[int] = field(
|
76 |
-
default=None,
|
77 |
-
metadata={"help": "Number of tokens per image"},
|
78 |
-
)
|
79 |
tokenizer_name: Optional[str] = field(
|
80 |
default=None,
|
81 |
metadata={
|
82 |
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
|
83 |
},
|
84 |
)
|
85 |
-
normalize_text: Optional[bool] = field(
|
86 |
-
default=None,
|
87 |
-
metadata={
|
88 |
-
"help": "Whether to normalize text or not. By default, we refer to base model or don't normalize for new models."
|
89 |
-
},
|
90 |
-
)
|
91 |
dtype: Optional[str] = field(
|
92 |
default="float32",
|
93 |
metadata={
|
@@ -126,26 +112,21 @@ class DataTrainingArguments:
|
|
126 |
default=None,
|
127 |
metadata={"help": "An optional input evaluation data file (glob acceptable)."},
|
128 |
)
|
129 |
-
dataset_type: str = field(
|
130 |
-
default="datasets",
|
131 |
-
metadata={"help": "Either 🤗 'dataset' (default) or 'webdataset'."},
|
132 |
-
)
|
133 |
# data loading should not be a bottleneck so we use "streaming" mode by default
|
134 |
-
streaming: bool = field(
|
135 |
default=True,
|
136 |
metadata={"help": "Whether to stream the dataset."},
|
137 |
)
|
138 |
-
use_auth_token: bool = field(
|
139 |
default=False,
|
140 |
metadata={
|
141 |
"help": "Whether to use the authentication token for private datasets."
|
142 |
},
|
143 |
)
|
144 |
-
|
145 |
-
default=
|
146 |
metadata={
|
147 |
-
"help": "
|
148 |
-
"than this will be truncated, sequences shorter will be padded."
|
149 |
},
|
150 |
)
|
151 |
max_train_samples: Optional[int] = field(
|
@@ -232,7 +213,11 @@ class TrainingArguments:
|
|
232 |
)
|
233 |
adafactor: bool = field(
|
234 |
default=False,
|
235 |
-
metadata={"help": "
|
|
|
|
|
|
|
|
|
236 |
)
|
237 |
weight_decay: float = field(
|
238 |
default=None, metadata={"help": "Weight decay if we apply some."}
|
@@ -351,14 +336,39 @@ def create_learning_rate_fn(
|
|
351 |
return schedule_fn
|
352 |
|
353 |
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
}
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
|
364 |
def main():
|
@@ -411,20 +421,29 @@ def main():
|
|
411 |
do_eval=training_args.do_eval,
|
412 |
)
|
413 |
|
|
|
|
|
|
|
414 |
# Set up wandb run
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
421 |
|
422 |
if training_args.resume_from_checkpoint is not None:
|
423 |
-
|
|
|
|
|
|
|
424 |
artifact_dir = artifact.download()
|
425 |
|
426 |
# load model
|
427 |
-
model =
|
|
|
|
|
428 |
# avoid OOM on TPU: see https://github.com/google/flax/issues/1658
|
429 |
print(model.params)
|
430 |
|
@@ -436,56 +455,24 @@ def main():
|
|
436 |
|
437 |
else:
|
438 |
# Set up our new model config
|
439 |
-
# TODO: simplify with custom config class
|
440 |
if model_args.config_name:
|
441 |
-
config =
|
442 |
-
else:
|
443 |
-
config = BartConfig.from_pretrained(model_args.model_name_or_path)
|
444 |
-
if model_args.image_vocab_size:
|
445 |
-
config.image_vocab_size = model_args.image_vocab_size
|
446 |
-
assert (
|
447 |
-
getattr(config, "image_vocab_size") is not None
|
448 |
-
), "image_vocab_size must be specified when not present in base model/config"
|
449 |
-
if model_args.image_length:
|
450 |
-
config.image_length = model_args.image_length
|
451 |
-
assert (
|
452 |
-
getattr(config, "image_length") is not None
|
453 |
-
), "image_length must be specified when not present in base model/config"
|
454 |
-
# we append decoder bos to image vocab
|
455 |
-
config.decoder_start_token_id = config.image_vocab_size
|
456 |
-
# ensure we don't generate bos (in addition to decoder start token)
|
457 |
-
config.force_bos_token_to_be_generated = False
|
458 |
-
config.forced_bos_token_id = None # we don't need this token
|
459 |
-
config.forced_eos_token_id = None # we don't need this token
|
460 |
-
|
461 |
-
config.tie_word_embeddings = False
|
462 |
-
config.min_length = config.image_length + 1
|
463 |
-
config.max_length = config.image_length + 1
|
464 |
-
|
465 |
-
# below tokens need to be set to avoid error during generation (converted to jnp.array)
|
466 |
-
# they are not expected to be used and are set to unreachable token id
|
467 |
-
config.bos_token_id = config.image_vocab_size + 1
|
468 |
-
config.pos_token_id = config.image_vocab_size + 1
|
469 |
-
config.eos_token_id = config.image_vocab_size + 1
|
470 |
-
|
471 |
-
# save whether we normalize the text
|
472 |
-
if model_args.normalize_text is not None:
|
473 |
-
config.normalize_text = model_args.normalize_text
|
474 |
else:
|
475 |
-
config
|
476 |
|
477 |
# Load or create new model
|
478 |
if model_args.model_name_or_path:
|
479 |
-
model =
|
480 |
model_args.model_name_or_path,
|
481 |
config=config,
|
482 |
seed=training_args.seed_model,
|
483 |
dtype=getattr(jnp, model_args.dtype),
|
|
|
484 |
)
|
485 |
# avoid OOM on TPU: see https://github.com/google/flax/issues/1658
|
486 |
print(model.params)
|
487 |
else:
|
488 |
-
model =
|
489 |
config,
|
490 |
seed=training_args.seed_model,
|
491 |
dtype=getattr(jnp, model_args.dtype),
|
@@ -502,9 +489,6 @@ def main():
|
|
502 |
use_fast=True,
|
503 |
)
|
504 |
|
505 |
-
logger.info(f"TPUs: {jax.device_count()}")
|
506 |
-
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
507 |
-
|
508 |
# Preprocessing the datasets.
|
509 |
# We need to normalize and tokenize inputs and targets.
|
510 |
|
@@ -512,6 +496,7 @@ def main():
|
|
512 |
tokenizer=tokenizer,
|
513 |
decoder_start_token_id=model.config.decoder_start_token_id,
|
514 |
normalize_text=model.config.normalize_text,
|
|
|
515 |
)
|
516 |
|
517 |
# Initialize our training
|
@@ -520,18 +505,28 @@ def main():
|
|
520 |
|
521 |
# Store some constant
|
522 |
num_epochs = int(training_args.num_train_epochs)
|
|
|
523 |
train_batch_size = (
|
524 |
-
int(training_args.per_device_train_batch_size) * jax.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
)
|
526 |
-
batch_size_per_update = train_batch_size * training_args.gradient_accumulation_steps
|
527 |
-
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
528 |
len_train_dataset, len_eval_dataset = dataset.length
|
529 |
steps_per_epoch = (
|
530 |
-
len_train_dataset // train_batch_size
|
|
|
|
|
531 |
)
|
532 |
num_train_steps = (
|
533 |
steps_per_epoch * num_epochs if steps_per_epoch is not None else None
|
534 |
)
|
|
|
535 |
|
536 |
# Create learning rate schedule
|
537 |
learning_rate_fn = create_learning_rate_fn(
|
@@ -572,13 +567,43 @@ def main():
|
|
572 |
weight_decay_mask=decay_mask_fn,
|
573 |
clipping_threshold=training_args.max_grad_norm,
|
574 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
else:
|
576 |
optimizer = optax.adamw(
|
577 |
learning_rate=learning_rate_fn,
|
578 |
b1=training_args.adam_beta1,
|
579 |
b2=training_args.adam_beta2,
|
580 |
eps=training_args.adam_epsilon,
|
581 |
-
weight_decay=training_args.weight_decay
|
|
|
|
|
582 |
mask=decay_mask_fn,
|
583 |
)
|
584 |
|
@@ -625,7 +650,7 @@ def main():
|
|
625 |
grads=grads,
|
626 |
dropout_rng=new_dropout_rng,
|
627 |
train_time=state.train_time + delta_time,
|
628 |
-
train_samples=state.train_samples + train_batch_size,
|
629 |
)
|
630 |
|
631 |
metrics = {
|
@@ -657,25 +682,30 @@ def main():
|
|
657 |
logger.info(
|
658 |
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
|
659 |
)
|
|
|
660 |
logger.info(
|
661 |
f" Total train batch size (w. parallel, distributed & gradient accumulation) = {batch_size_per_update}"
|
662 |
)
|
|
|
663 |
epochs = tqdm(
|
664 |
range(state.epoch, num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0
|
665 |
)
|
666 |
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
|
|
|
|
|
|
679 |
|
680 |
# replicate state on each device
|
681 |
state = state.replicate()
|
@@ -706,7 +736,9 @@ def main():
|
|
706 |
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
707 |
|
708 |
# log metrics
|
709 |
-
|
|
|
|
|
710 |
|
711 |
# Print metrics and update progress bar
|
712 |
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
|
@@ -743,51 +775,61 @@ def main():
|
|
743 |
f,
|
744 |
)
|
745 |
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
metadata["
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
791 |
|
792 |
# init variables
|
793 |
last_time = time.perf_counter()
|
@@ -796,7 +838,7 @@ def main():
|
|
796 |
for epoch in epochs:
|
797 |
state.replace(epoch=jax_utils.replicate(epoch))
|
798 |
# ======================== Training ================================
|
799 |
-
|
800 |
|
801 |
# Generate an epoch by shuffling sampling indices from the train dataset
|
802 |
train_loader = dataset.dataloader("train", train_batch_size)
|
@@ -821,14 +863,8 @@ def main():
|
|
821 |
step = unreplicate(state.step)
|
822 |
|
823 |
if step % training_args.logging_steps == 0 and jax.process_index() == 0:
|
824 |
-
|
825 |
-
|
826 |
-
# log state parameters
|
827 |
-
state_dict = {
|
828 |
-
k.split("_")[-1]: unreplicate(getattr(state, k))
|
829 |
-
for k in ["epoch", "train_time", "train_samples"]
|
830 |
-
}
|
831 |
-
wandb_log({**metrics, **state_dict}, step=step, prefix="train")
|
832 |
|
833 |
eval_metrics = None
|
834 |
if training_args.eval_steps and step % training_args.eval_steps == 0:
|
@@ -839,8 +875,8 @@ def main():
|
|
839 |
|
840 |
# log final train metrics
|
841 |
if train_metrics is not None:
|
842 |
-
|
843 |
-
|
844 |
|
845 |
epochs.write(
|
846 |
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})"
|
|
|
34 |
import transformers
|
35 |
import wandb
|
36 |
from datasets import Dataset
|
37 |
+
from distributed_shampoo import GraftingType, distributed_shampoo
|
38 |
from flax import jax_utils, traverse_util
|
39 |
from flax.jax_utils import unreplicate
|
40 |
from flax.serialization import from_bytes, to_bytes
|
|
|
42 |
from flax.training.common_utils import get_metrics, onehot, shard_prng_key
|
43 |
from tqdm import tqdm
|
44 |
from transformers import AutoTokenizer, HfArgumentParser
|
|
|
45 |
|
46 |
from dalle_mini.data import Dataset
|
47 |
+
from dalle_mini.model import DalleBart, DalleBartConfig
|
48 |
|
49 |
logger = logging.getLogger(__name__)
|
50 |
|
|
|
68 |
"help": "Pretrained config name or path if not the same as model_name"
|
69 |
},
|
70 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
tokenizer_name: Optional[str] = field(
|
72 |
default=None,
|
73 |
metadata={
|
74 |
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
|
75 |
},
|
76 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
dtype: Optional[str] = field(
|
78 |
default="float32",
|
79 |
metadata={
|
|
|
112 |
default=None,
|
113 |
metadata={"help": "An optional input evaluation data file (glob acceptable)."},
|
114 |
)
|
|
|
|
|
|
|
|
|
115 |
# data loading should not be a bottleneck so we use "streaming" mode by default
|
116 |
+
streaming: Optional[bool] = field(
|
117 |
default=True,
|
118 |
metadata={"help": "Whether to stream the dataset."},
|
119 |
)
|
120 |
+
use_auth_token: Optional[bool] = field(
|
121 |
default=False,
|
122 |
metadata={
|
123 |
"help": "Whether to use the authentication token for private datasets."
|
124 |
},
|
125 |
)
|
126 |
+
shard_by_host: Optional[bool] = field(
|
127 |
+
default=False,
|
128 |
metadata={
|
129 |
+
"help": "Whether to shard data files by host in multi-host environments."
|
|
|
130 |
},
|
131 |
)
|
132 |
max_train_samples: Optional[int] = field(
|
|
|
213 |
)
|
214 |
adafactor: bool = field(
|
215 |
default=False,
|
216 |
+
metadata={"help": "Use Adafactor instead of AdamW."},
|
217 |
+
)
|
218 |
+
distributed_shampoo: bool = field(
|
219 |
+
default=False,
|
220 |
+
metadata={"help": "Use Distributed Shampoo optimizer instead of AdamW."},
|
221 |
)
|
222 |
weight_decay: float = field(
|
223 |
default=None, metadata={"help": "Weight decay if we apply some."}
|
|
|
336 |
return schedule_fn
|
337 |
|
338 |
|
339 |
+
class MetricsLogger:
|
340 |
+
def __init__(self, state):
|
341 |
+
self.step = state.step
|
342 |
+
self.time = time.perf_counter()
|
343 |
+
|
344 |
+
def get_all_train_metrics(self, train_metrics, state):
|
345 |
+
"""Make a dict of training metrics to be logged"""
|
346 |
+
metrics = unreplicate(train_metrics)
|
347 |
+
# get state parameters
|
348 |
+
state_dict = {
|
349 |
+
k.split("_")[-1]: unreplicate(getattr(state, k))
|
350 |
+
for k in ["epoch", "train_time", "train_samples"]
|
351 |
}
|
352 |
+
# timing metrics
|
353 |
+
new_step = int(unreplicate(state.step))
|
354 |
+
new_time = time.perf_counter()
|
355 |
+
if new_step > self.step:
|
356 |
+
time_per_step = (new_time - self.time) / (new_step - self.step)
|
357 |
+
self.step = new_step
|
358 |
+
self.time = new_time
|
359 |
+
state_dict["time_per_step"] = time_per_step
|
360 |
+
return {**metrics, **state_dict}
|
361 |
+
|
362 |
+
@staticmethod
|
363 |
+
def log(metrics, step=None, prefix=None):
|
364 |
+
if jax.process_index() == 0:
|
365 |
+
log_metrics = {
|
366 |
+
f"{prefix}/{k}" if prefix is not None else k: v
|
367 |
+
for k, v in metrics.items()
|
368 |
+
}
|
369 |
+
if step is not None:
|
370 |
+
log_metrics["train/step"] = step
|
371 |
+
wandb.log(log_metrics)
|
372 |
|
373 |
|
374 |
def main():
|
|
|
421 |
do_eval=training_args.do_eval,
|
422 |
)
|
423 |
|
424 |
+
logger.info(f"Local TPUs: {jax.local_device_count()}")
|
425 |
+
assert jax.local_device_count() == 8, "TPUs in use, please check running processes"
|
426 |
+
|
427 |
# Set up wandb run
|
428 |
+
if jax.process_index() == 0:
|
429 |
+
wandb.init(
|
430 |
+
entity="dalle-mini",
|
431 |
+
project="dalle-mini",
|
432 |
+
job_type="Seq2Seq",
|
433 |
+
config=parser.parse_args(),
|
434 |
+
)
|
435 |
|
436 |
if training_args.resume_from_checkpoint is not None:
|
437 |
+
if jax.process_index() == 0:
|
438 |
+
artifact = wandb.run.use_artifact(training_args.resume_from_checkpoint)
|
439 |
+
else:
|
440 |
+
artifact = wandb.Api().artifact(training_args.resume_from_checkpoint)
|
441 |
artifact_dir = artifact.download()
|
442 |
|
443 |
# load model
|
444 |
+
model = DalleBart.from_pretrained(
|
445 |
+
artifact_dir, dtype=getattr(jnp, model_args.dtype), abstract_init=True
|
446 |
+
)
|
447 |
# avoid OOM on TPU: see https://github.com/google/flax/issues/1658
|
448 |
print(model.params)
|
449 |
|
|
|
455 |
|
456 |
else:
|
457 |
# Set up our new model config
|
|
|
458 |
if model_args.config_name:
|
459 |
+
config = DalleBartConfig.from_pretrained(model_args.config_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
460 |
else:
|
461 |
+
config = DalleBartConfig.from_pretrained(model_args.model_name_or_path)
|
462 |
|
463 |
# Load or create new model
|
464 |
if model_args.model_name_or_path:
|
465 |
+
model = DalleBart.from_pretrained(
|
466 |
model_args.model_name_or_path,
|
467 |
config=config,
|
468 |
seed=training_args.seed_model,
|
469 |
dtype=getattr(jnp, model_args.dtype),
|
470 |
+
abstract_init=True,
|
471 |
)
|
472 |
# avoid OOM on TPU: see https://github.com/google/flax/issues/1658
|
473 |
print(model.params)
|
474 |
else:
|
475 |
+
model = DalleBart(
|
476 |
config,
|
477 |
seed=training_args.seed_model,
|
478 |
dtype=getattr(jnp, model_args.dtype),
|
|
|
489 |
use_fast=True,
|
490 |
)
|
491 |
|
|
|
|
|
|
|
492 |
# Preprocessing the datasets.
|
493 |
# We need to normalize and tokenize inputs and targets.
|
494 |
|
|
|
496 |
tokenizer=tokenizer,
|
497 |
decoder_start_token_id=model.config.decoder_start_token_id,
|
498 |
normalize_text=model.config.normalize_text,
|
499 |
+
max_length=model.config.max_text_length,
|
500 |
)
|
501 |
|
502 |
# Initialize our training
|
|
|
505 |
|
506 |
# Store some constant
|
507 |
num_epochs = int(training_args.num_train_epochs)
|
508 |
+
# batch size per node
|
509 |
train_batch_size = (
|
510 |
+
int(training_args.per_device_train_batch_size) * jax.local_device_count()
|
511 |
+
)
|
512 |
+
batch_size_per_update = (
|
513 |
+
train_batch_size
|
514 |
+
* training_args.gradient_accumulation_steps
|
515 |
+
* jax.process_count()
|
516 |
+
)
|
517 |
+
eval_batch_size = (
|
518 |
+
int(training_args.per_device_eval_batch_size) * jax.local_device_count()
|
519 |
)
|
|
|
|
|
520 |
len_train_dataset, len_eval_dataset = dataset.length
|
521 |
steps_per_epoch = (
|
522 |
+
len_train_dataset // (train_batch_size * jax.process_count())
|
523 |
+
if len_train_dataset is not None
|
524 |
+
else None
|
525 |
)
|
526 |
num_train_steps = (
|
527 |
steps_per_epoch * num_epochs if steps_per_epoch is not None else None
|
528 |
)
|
529 |
+
num_params = model.num_params
|
530 |
|
531 |
# Create learning rate schedule
|
532 |
learning_rate_fn = create_learning_rate_fn(
|
|
|
567 |
weight_decay_mask=decay_mask_fn,
|
568 |
clipping_threshold=training_args.max_grad_norm,
|
569 |
)
|
570 |
+
elif training_args.distributed_shampoo:
|
571 |
+
# parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729
|
572 |
+
# Notes:
|
573 |
+
# - mask for weight decay is not implemented but we don't use it anyway
|
574 |
+
optimizer = distributed_shampoo(
|
575 |
+
learning_rate_fn,
|
576 |
+
block_size=1024, # recommended default for large LM is 1536
|
577 |
+
beta1=0.9,
|
578 |
+
beta2=0.999,
|
579 |
+
diagonal_epsilon=1e-10,
|
580 |
+
matrix_epsilon=1e-8,
|
581 |
+
weight_decay=0.0,
|
582 |
+
start_preconditioning_step=1001,
|
583 |
+
preconditioning_compute_steps=10,
|
584 |
+
statistics_compute_steps=1,
|
585 |
+
best_effort_shape_interpretation=True,
|
586 |
+
graft_type=GraftingType.RMSPROP_NORMALIZED,
|
587 |
+
nesterov=False,
|
588 |
+
exponent_override=0,
|
589 |
+
batch_axis_name="batch",
|
590 |
+
inverse_failure_threshold=0.1,
|
591 |
+
moving_average_for_momentum=True,
|
592 |
+
skip_preconditioning_dim_size_gt=4096,
|
593 |
+
clip_by_scaled_gradient_norm=None,
|
594 |
+
precision=jax.lax.Precision.HIGHEST,
|
595 |
+
best_effort_memory_usage_reduction=False,
|
596 |
+
)
|
597 |
+
|
598 |
else:
|
599 |
optimizer = optax.adamw(
|
600 |
learning_rate=learning_rate_fn,
|
601 |
b1=training_args.adam_beta1,
|
602 |
b2=training_args.adam_beta2,
|
603 |
eps=training_args.adam_epsilon,
|
604 |
+
weight_decay=training_args.weight_decay
|
605 |
+
if training_args.weight_decay is not None
|
606 |
+
else 0.0,
|
607 |
mask=decay_mask_fn,
|
608 |
)
|
609 |
|
|
|
650 |
grads=grads,
|
651 |
dropout_rng=new_dropout_rng,
|
652 |
train_time=state.train_time + delta_time,
|
653 |
+
train_samples=state.train_samples + train_batch_size * jax.process_count(),
|
654 |
)
|
655 |
|
656 |
metrics = {
|
|
|
682 |
logger.info(
|
683 |
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
|
684 |
)
|
685 |
+
logger.info(f" Number of devices = {jax.device_count()}")
|
686 |
logger.info(
|
687 |
f" Total train batch size (w. parallel, distributed & gradient accumulation) = {batch_size_per_update}"
|
688 |
)
|
689 |
+
logger.info(f" Model parameters = {num_params:,}")
|
690 |
epochs = tqdm(
|
691 |
range(state.epoch, num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0
|
692 |
)
|
693 |
|
694 |
+
metrics_logger = MetricsLogger(state)
|
695 |
+
if jax.process_index() == 0:
|
696 |
+
# set default x-axis as 'train/step'
|
697 |
+
metrics_logger.log({}, step=state.step)
|
698 |
+
wandb.define_metric("*", step_metric="train/step")
|
699 |
+
|
700 |
+
# add interesting config parameters
|
701 |
+
wandb.config.update(
|
702 |
+
{
|
703 |
+
"len_train_dataset": len_train_dataset,
|
704 |
+
"len_eval_dataset": len_eval_dataset,
|
705 |
+
"batch_size_per_update": batch_size_per_update,
|
706 |
+
"num_params": num_params,
|
707 |
+
}
|
708 |
+
)
|
709 |
|
710 |
# replicate state on each device
|
711 |
state = state.replicate()
|
|
|
736 |
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
737 |
|
738 |
# log metrics
|
739 |
+
metrics_logger.log(
|
740 |
+
eval_metrics, step=unreplicate(state.step), prefix="eval"
|
741 |
+
)
|
742 |
|
743 |
# Print metrics and update progress bar
|
744 |
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
|
|
|
775 |
f,
|
776 |
)
|
777 |
|
778 |
+
if jax.process_index() == 0:
|
779 |
+
# save to W&B
|
780 |
+
if training_args.log_model:
|
781 |
+
# save some space
|
782 |
+
c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
|
783 |
+
c.cleanup(wandb.util.from_human_size("10GB"))
|
784 |
+
|
785 |
+
metadata = dict(state_dict)
|
786 |
+
metadata["num_params"] = num_params
|
787 |
+
if eval_metrics is not None:
|
788 |
+
metadata["eval"] = eval_metrics
|
789 |
+
artifact = wandb.Artifact(
|
790 |
+
name=f"model-{wandb.run.id}",
|
791 |
+
type="bart_model",
|
792 |
+
metadata=metadata,
|
793 |
+
)
|
794 |
+
artifact.add_file(
|
795 |
+
str(Path(training_args.output_dir) / "flax_model.msgpack")
|
796 |
+
)
|
797 |
+
artifact.add_file(
|
798 |
+
str(Path(training_args.output_dir) / "config.json")
|
799 |
+
)
|
800 |
+
artifact.add_file(
|
801 |
+
str(Path(training_args.output_dir) / "tokenizer.json")
|
802 |
+
)
|
803 |
+
artifact.add_file(
|
804 |
+
str(Path(training_args.output_dir) / "tokenizer_config.json")
|
805 |
+
)
|
806 |
+
artifact.add_file(
|
807 |
+
str(Path(training_args.output_dir) / "vocab.json")
|
808 |
+
)
|
809 |
+
artifact.add_file(
|
810 |
+
str(Path(training_args.output_dir) / "merges.txt")
|
811 |
+
)
|
812 |
+
artifact.add_file(
|
813 |
+
str(Path(training_args.output_dir) / "special_tokens_map.json")
|
814 |
+
)
|
815 |
+
artifact.add_file(
|
816 |
+
str(Path(training_args.output_dir) / "opt_state.msgpack")
|
817 |
+
)
|
818 |
+
artifact.add_file(
|
819 |
+
str(Path(training_args.output_dir) / "training_state.json")
|
820 |
+
)
|
821 |
+
|
822 |
+
wandb.run.log_artifact(artifact)
|
823 |
+
|
824 |
+
# save to the hub
|
825 |
+
if training_args.push_to_hub:
|
826 |
+
model.save_pretrained(
|
827 |
+
training_args.output_dir,
|
828 |
+
params=params,
|
829 |
+
push_to_hub=training_args.push_to_hub,
|
830 |
+
commit_message=f"Saving weights and logs at step {unreplicate(state.step)+1}",
|
831 |
+
temp_dir=True, # avoid issues with being in a repository
|
832 |
+
)
|
833 |
|
834 |
# init variables
|
835 |
last_time = time.perf_counter()
|
|
|
838 |
for epoch in epochs:
|
839 |
state.replace(epoch=jax_utils.replicate(epoch))
|
840 |
# ======================== Training ================================
|
841 |
+
metrics_logger.log({"train/epoch": epoch}, step=unreplicate(state.step))
|
842 |
|
843 |
# Generate an epoch by shuffling sampling indices from the train dataset
|
844 |
train_loader = dataset.dataloader("train", train_batch_size)
|
|
|
863 |
step = unreplicate(state.step)
|
864 |
|
865 |
if step % training_args.logging_steps == 0 and jax.process_index() == 0:
|
866 |
+
all_metrics = metrics_logger.get_all_train_metrics(train_metrics, state)
|
867 |
+
metrics_logger.log(all_metrics, step=step, prefix="train")
|
|
|
|
|
|
|
|
|
|
|
|
|
868 |
|
869 |
eval_metrics = None
|
870 |
if training_args.eval_steps and step % training_args.eval_steps == 0:
|
|
|
875 |
|
876 |
# log final train metrics
|
877 |
if train_metrics is not None:
|
878 |
+
all_metrics = metrics_logger.get_all_train_metrics(train_metrics, state)
|
879 |
+
metrics_logger.log(all_metrics, step=step, prefix="train")
|
880 |
|
881 |
epochs.write(
|
882 |
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})"
|