Spaces:
Running
Running
refactor(model): inherit from HF Flax & simplify
Browse files- dalle_mini/model/__init__.py +1 -1
- dalle_mini/model/configuration.py +4 -71
- dalle_mini/model/modeling.py +163 -734
dalle_mini/model/__init__.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
from .configuration import DalleBartConfig
|
2 |
-
from .modeling import
|
|
|
1 |
from .configuration import DalleBartConfig
|
2 |
+
from .modeling import DalleBart
|
dalle_mini/model/configuration.py
CHANGED
@@ -22,69 +22,6 @@ logger = logging.get_logger(__name__)
|
|
22 |
|
23 |
|
24 |
class DalleBartConfig(PretrainedConfig):
|
25 |
-
r"""
|
26 |
-
This is the configuration class to store the configuration of a `DalleBartModel`. It is used to
|
27 |
-
instantiate a DalleBart model according to the specified arguments, defining the model architecture. Instantiating a
|
28 |
-
configuration with the defaults will yield a similar configuration to that of the BART `facebook/bart-large
|
29 |
-
<https://huggingface.co/facebook/bart-large>`__ architecture.
|
30 |
-
|
31 |
-
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
32 |
-
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
33 |
-
|
34 |
-
|
35 |
-
Args:
|
36 |
-
encoder_vocab_size (:obj:`int`, `optional`, defaults to 50265):
|
37 |
-
Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
|
38 |
-
:obj:`inputs_ids` passed when calling :class:`~transformers.BartModel` or
|
39 |
-
:class:`~transformers.TFBartModel`.
|
40 |
-
d_model (:obj:`int`, `optional`, defaults to 1024):
|
41 |
-
Dimensionality of the layers and the pooler layer.
|
42 |
-
encoder_layers (:obj:`int`, `optional`, defaults to 12):
|
43 |
-
Number of encoder layers.
|
44 |
-
decoder_layers (:obj:`int`, `optional`, defaults to 12):
|
45 |
-
Number of decoder layers.
|
46 |
-
encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
|
47 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
-
decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
|
49 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
50 |
-
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
|
51 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
52 |
-
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
|
53 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
54 |
-
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
|
55 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
56 |
-
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
|
57 |
-
dropout (:obj:`float`, `optional`, defaults to 0.1):
|
58 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
59 |
-
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
60 |
-
The dropout ratio for the attention probabilities.
|
61 |
-
activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
62 |
-
The dropout ratio for activations inside the fully connected layer.
|
63 |
-
classifier_dropout (:obj:`float`, `optional`, defaults to 0.0):
|
64 |
-
The dropout ratio for classifier.
|
65 |
-
max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
|
66 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
67 |
-
just in case (e.g., 512 or 1024 or 2048).
|
68 |
-
init_std (:obj:`float`, `optional`, defaults to 0.02):
|
69 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
-
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
|
71 |
-
The LayerDrop probability for the encoder. See the `LayerDrop paper <see
|
72 |
-
https://arxiv.org/abs/1909.11556>`__ for more details.
|
73 |
-
decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
|
74 |
-
The LayerDrop probability for the decoder. See the `LayerDrop paper <see
|
75 |
-
https://arxiv.org/abs/1909.11556>`__ for more details.
|
76 |
-
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
77 |
-
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
|
78 |
-
scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
79 |
-
Scale embeddings by diving by sqrt(d_model).
|
80 |
-
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
81 |
-
Whether or not the model should return the last key/values attentions (not used by all models).
|
82 |
-
num_labels: (:obj:`int`, `optional`, defaults to 3):
|
83 |
-
The number of labels to use in :class:`~transformers.BartForSequenceClassification`.
|
84 |
-
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
|
85 |
-
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
|
86 |
-
:obj:`eos_token_id`.
|
87 |
-
"""
|
88 |
model_type = "dallebart"
|
89 |
keys_to_ignore_at_inference = ["past_key_values"]
|
90 |
attribute_map = {
|
@@ -117,10 +54,9 @@ class DalleBartConfig(PretrainedConfig):
|
|
117 |
scale_embedding=False,
|
118 |
gradient_checkpointing=False,
|
119 |
use_cache=True,
|
120 |
-
num_labels=3,
|
121 |
is_encoder_decoder=True,
|
122 |
forced_eos_token_id=None,
|
123 |
-
tie_word_embeddings=False, #
|
124 |
**kwargs,
|
125 |
):
|
126 |
self.normalize_text = normalize_text
|
@@ -149,28 +85,25 @@ class DalleBartConfig(PretrainedConfig):
|
|
149 |
self.scale_embedding = (
|
150 |
scale_embedding # scale factor will be sqrt(d_model) if True
|
151 |
)
|
152 |
-
self.decoder_start_token_id = image_vocab_size # BOS appended to vocab
|
153 |
self.min_length = image_length + 1
|
154 |
self.max_length = image_length + 1
|
155 |
|
156 |
-
# remove keys
|
157 |
for k in [
|
|
|
158 |
"bos_token_id",
|
159 |
"eos_token_id",
|
160 |
-
"pad_token_id",
|
161 |
"decoder_start_token_id",
|
162 |
-
"forced_eos_token_id",
|
163 |
]:
|
164 |
kwargs.pop(k, None)
|
165 |
|
166 |
super().__init__(
|
167 |
-
num_labels=num_labels,
|
168 |
pad_token_id=image_vocab_size
|
169 |
+ 1, # needed to avoid errors during generation (converted to jnp.array)
|
170 |
bos_token_id=image_vocab_size + 1, # set to unreachable values
|
171 |
eos_token_id=image_vocab_size + 1,
|
172 |
is_encoder_decoder=is_encoder_decoder,
|
173 |
-
decoder_start_token_id=
|
174 |
forced_eos_token_id=forced_eos_token_id,
|
175 |
tie_word_embeddings=tie_word_embeddings,
|
176 |
**kwargs,
|
|
|
22 |
|
23 |
|
24 |
class DalleBartConfig(PretrainedConfig):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
model_type = "dallebart"
|
26 |
keys_to_ignore_at_inference = ["past_key_values"]
|
27 |
attribute_map = {
|
|
|
54 |
scale_embedding=False,
|
55 |
gradient_checkpointing=False,
|
56 |
use_cache=True,
|
|
|
57 |
is_encoder_decoder=True,
|
58 |
forced_eos_token_id=None,
|
59 |
+
tie_word_embeddings=False, # different modalities and sizes
|
60 |
**kwargs,
|
61 |
):
|
62 |
self.normalize_text = normalize_text
|
|
|
85 |
self.scale_embedding = (
|
86 |
scale_embedding # scale factor will be sqrt(d_model) if True
|
87 |
)
|
|
|
88 |
self.min_length = image_length + 1
|
89 |
self.max_length = image_length + 1
|
90 |
|
91 |
+
# remove inferred keys to prevent errors when loading config (passed as kwargs)
|
92 |
for k in [
|
93 |
+
"pad_token_id",
|
94 |
"bos_token_id",
|
95 |
"eos_token_id",
|
|
|
96 |
"decoder_start_token_id",
|
|
|
97 |
]:
|
98 |
kwargs.pop(k, None)
|
99 |
|
100 |
super().__init__(
|
|
|
101 |
pad_token_id=image_vocab_size
|
102 |
+ 1, # needed to avoid errors during generation (converted to jnp.array)
|
103 |
bos_token_id=image_vocab_size + 1, # set to unreachable values
|
104 |
eos_token_id=image_vocab_size + 1,
|
105 |
is_encoder_decoder=is_encoder_decoder,
|
106 |
+
decoder_start_token_id=image_vocab_size, # BOS appended to vocab
|
107 |
forced_eos_token_id=forced_eos_token_id,
|
108 |
tie_word_embeddings=tie_word_embeddings,
|
109 |
**kwargs,
|
dalle_mini/model/modeling.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -12,72 +12,61 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
"""
|
16 |
|
17 |
import math
|
18 |
from functools import partial
|
19 |
-
from typing import
|
20 |
|
21 |
import flax.linen as nn
|
22 |
import jax
|
23 |
import jax.numpy as jnp
|
24 |
-
|
25 |
-
from flax.
|
26 |
-
from flax.linen import combine_masks, make_causal_mask
|
27 |
-
from flax.linen.attention import dot_product_attention_weights
|
28 |
from flax.traverse_util import flatten_dict
|
29 |
-
from jax import lax
|
30 |
from jax.random import PRNGKey
|
31 |
from transformers.modeling_flax_outputs import (
|
32 |
-
FlaxBaseModelOutput,
|
33 |
-
FlaxBaseModelOutputWithPastAndCrossAttentions,
|
34 |
FlaxCausalLMOutputWithCrossAttentions,
|
35 |
FlaxSeq2SeqLMOutput,
|
36 |
-
FlaxSeq2SeqModelOutput,
|
37 |
)
|
38 |
-
from transformers.modeling_flax_utils import ACT2FN
|
39 |
from transformers.utils import logging
|
40 |
|
41 |
-
from .
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
logger = logging.get_logger(__name__)
|
44 |
|
45 |
|
46 |
-
|
47 |
-
input_ids: np.array, pad_token_id: int, decoder_start_token_id: int
|
48 |
-
) -> np.ndarray:
|
49 |
"""
|
50 |
-
|
|
|
51 |
"""
|
52 |
-
shifted_input_ids = np.zeros_like(input_ids)
|
53 |
-
shifted_input_ids[:, 1:] = input_ids[:, :-1]
|
54 |
-
shifted_input_ids[:, 0] = decoder_start_token_id
|
55 |
-
|
56 |
-
shifted_input_ids = np.where(
|
57 |
-
shifted_input_ids == -100, pad_token_id, shifted_input_ids
|
58 |
-
)
|
59 |
-
return shifted_input_ids
|
60 |
-
|
61 |
-
|
62 |
-
class FlaxBartAttention(nn.Module):
|
63 |
-
config: DalleBartConfig
|
64 |
-
embed_dim: int
|
65 |
-
num_heads: int
|
66 |
-
dropout: float = 0.0
|
67 |
-
causal: bool = False
|
68 |
-
bias: bool = True
|
69 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
70 |
|
71 |
def setup(self) -> None:
|
72 |
self.head_dim = self.embed_dim // self.num_heads
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
76 |
|
77 |
dense = partial(
|
78 |
nn.Dense,
|
79 |
self.embed_dim,
|
80 |
-
use_bias=
|
81 |
dtype=self.dtype,
|
82 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
83 |
)
|
@@ -92,150 +81,13 @@ class FlaxBartAttention(nn.Module):
|
|
92 |
jnp.ones((1, self.embed_dim), dtype="bool"), dtype="bool"
|
93 |
)
|
94 |
|
95 |
-
def _split_heads(self, hidden_states):
|
96 |
-
return hidden_states.reshape(
|
97 |
-
hidden_states.shape[:2] + (self.num_heads, self.head_dim)
|
98 |
-
)
|
99 |
-
|
100 |
-
def _merge_heads(self, hidden_states):
|
101 |
-
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
102 |
-
|
103 |
-
@nn.compact
|
104 |
-
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
105 |
-
"""
|
106 |
-
This function takes projected key, value states from a single input token and concatenates the states to cached
|
107 |
-
states from previous steps. This function is slighly adapted from the official Flax repository:
|
108 |
-
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
109 |
-
"""
|
110 |
-
# detect if we're initializing by absence of existing cache data.
|
111 |
-
is_initialized = self.has_variable("cache", "cached_key")
|
112 |
-
cached_key = self.variable(
|
113 |
-
"cache", "cached_key", jnp.zeros, key.shape, key.dtype
|
114 |
-
)
|
115 |
-
cached_value = self.variable(
|
116 |
-
"cache", "cached_value", jnp.zeros, value.shape, value.dtype
|
117 |
-
)
|
118 |
-
cache_index = self.variable(
|
119 |
-
"cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)
|
120 |
-
)
|
121 |
-
|
122 |
-
if is_initialized:
|
123 |
-
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
124 |
-
# update key, value caches with our new 1d spatial slices
|
125 |
-
cur_index = cache_index.value
|
126 |
-
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
127 |
-
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
128 |
-
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
129 |
-
cached_key.value = key
|
130 |
-
cached_value.value = value
|
131 |
-
num_updated_cache_vectors = query.shape[1]
|
132 |
-
cache_index.value = cache_index.value + num_updated_cache_vectors
|
133 |
-
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
|
134 |
-
pad_mask = jnp.broadcast_to(
|
135 |
-
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
136 |
-
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
137 |
-
)
|
138 |
-
attention_mask = combine_masks(pad_mask, attention_mask)
|
139 |
-
return key, value, attention_mask
|
140 |
-
|
141 |
-
def __call__(
|
142 |
-
self,
|
143 |
-
hidden_states: jnp.ndarray,
|
144 |
-
attention_mask: jnp.ndarray,
|
145 |
-
key_value_states: Optional[jnp.ndarray] = None,
|
146 |
-
init_cache: bool = False,
|
147 |
-
deterministic: bool = True,
|
148 |
-
) -> Tuple[jnp.ndarray]:
|
149 |
-
"""Input shape: Batch x Time x Channel"""
|
150 |
-
|
151 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
152 |
-
# for the decoder
|
153 |
-
is_cross_attention = key_value_states is not None
|
154 |
-
batch_size = hidden_states.shape[0]
|
155 |
-
|
156 |
-
# get query proj
|
157 |
-
query_states = self.q_proj(hidden_states)
|
158 |
-
# get key, value proj
|
159 |
-
if is_cross_attention:
|
160 |
-
# cross_attentions
|
161 |
-
key_states = self.k_proj(key_value_states)
|
162 |
-
value_states = self.v_proj(key_value_states)
|
163 |
-
else:
|
164 |
-
# self_attention
|
165 |
-
key_states = self.k_proj(hidden_states)
|
166 |
-
value_states = self.v_proj(hidden_states)
|
167 |
-
|
168 |
-
query_states = self._split_heads(query_states)
|
169 |
-
key_states = self._split_heads(key_states)
|
170 |
-
value_states = self._split_heads(value_states)
|
171 |
-
|
172 |
-
# handle cache prepare causal attention mask
|
173 |
-
if self.causal:
|
174 |
-
query_length, key_length = query_states.shape[1], key_states.shape[1]
|
175 |
-
if self.has_variable("cache", "cached_key"):
|
176 |
-
mask_shift = self.variables["cache"]["cache_index"]
|
177 |
-
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
178 |
-
causal_mask = lax.dynamic_slice(
|
179 |
-
self.causal_mask,
|
180 |
-
(0, 0, mask_shift, 0),
|
181 |
-
(1, 1, query_length, max_decoder_length),
|
182 |
-
)
|
183 |
-
else:
|
184 |
-
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
185 |
-
causal_mask = jnp.broadcast_to(
|
186 |
-
causal_mask, (batch_size,) + causal_mask.shape[1:]
|
187 |
-
)
|
188 |
-
|
189 |
-
# combine masks if needed
|
190 |
-
if self.causal:
|
191 |
-
attention_mask = jnp.broadcast_to(
|
192 |
-
jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape
|
193 |
-
)
|
194 |
-
attention_mask = combine_masks(attention_mask, causal_mask)
|
195 |
-
else:
|
196 |
-
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
197 |
-
|
198 |
-
# During fast autoregressive decoding, we feed one position at a time,
|
199 |
-
# and cache the keys and values step by step.
|
200 |
-
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
|
201 |
-
key_states, value_states, attention_mask = self._concatenate_to_cache(
|
202 |
-
key_states, value_states, query_states, attention_mask
|
203 |
-
)
|
204 |
-
|
205 |
-
# Convert the boolean attention mask to an attention bias.
|
206 |
-
# attention mask in the form of attention bias
|
207 |
-
attention_bias = lax.select(
|
208 |
-
attention_mask > 0,
|
209 |
-
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
210 |
-
jnp.full(attention_mask.shape, float("-inf")).astype(self.dtype),
|
211 |
-
)
|
212 |
-
|
213 |
-
dropout_rng = None
|
214 |
-
if not deterministic and self.dropout > 0.0:
|
215 |
-
dropout_rng = self.make_rng("dropout")
|
216 |
-
|
217 |
-
attn_weights = dot_product_attention_weights(
|
218 |
-
query_states,
|
219 |
-
key_states,
|
220 |
-
bias=attention_bias,
|
221 |
-
dropout_rng=dropout_rng,
|
222 |
-
dropout_rate=self.dropout,
|
223 |
-
broadcast_dropout=True,
|
224 |
-
deterministic=deterministic,
|
225 |
-
dtype=self.dtype,
|
226 |
-
precision=None,
|
227 |
-
)
|
228 |
-
|
229 |
-
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
230 |
-
attn_output = self._merge_heads(attn_output)
|
231 |
-
attn_output = self.out_proj(attn_output)
|
232 |
-
|
233 |
-
return attn_output
|
234 |
-
|
235 |
|
236 |
-
class FlaxBartEncoderLayer(
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
239 |
|
240 |
def setup(self) -> None:
|
241 |
self.embed_dim = self.config.d_model
|
@@ -244,9 +96,10 @@ class FlaxBartEncoderLayer(nn.Module):
|
|
244 |
embed_dim=self.embed_dim,
|
245 |
num_heads=self.config.encoder_attention_heads,
|
246 |
dropout=self.config.attention_dropout,
|
|
|
247 |
dtype=self.dtype,
|
248 |
)
|
249 |
-
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
250 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
251 |
self.activation_fn = ACT2FN[self.config.activation_function]
|
252 |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
@@ -262,39 +115,15 @@ class FlaxBartEncoderLayer(nn.Module):
|
|
262 |
use_bias=False,
|
263 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
264 |
)
|
265 |
-
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
266 |
-
|
267 |
-
def __call__(
|
268 |
-
self,
|
269 |
-
hidden_states: jnp.ndarray,
|
270 |
-
attention_mask: jnp.ndarray,
|
271 |
-
deterministic: bool = True,
|
272 |
-
) -> Tuple[jnp.ndarray]:
|
273 |
-
residual = hidden_states
|
274 |
-
hidden_states = self.self_attn(
|
275 |
-
hidden_states=hidden_states, attention_mask=attention_mask
|
276 |
-
)
|
277 |
-
|
278 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
279 |
-
hidden_states = residual + hidden_states
|
280 |
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
281 |
-
|
282 |
-
residual = hidden_states
|
283 |
-
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
284 |
-
hidden_states = self.activation_dropout_layer(
|
285 |
-
hidden_states, deterministic=deterministic
|
286 |
-
)
|
287 |
-
hidden_states = self.fc2(hidden_states)
|
288 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
289 |
-
hidden_states = residual + hidden_states
|
290 |
-
hidden_states = self.final_layer_norm(hidden_states)
|
291 |
-
|
292 |
-
return hidden_states
|
293 |
|
294 |
|
295 |
-
class FlaxBartEncoderLayerCollection(
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
298 |
|
299 |
def setup(self):
|
300 |
layer_module = (
|
@@ -306,27 +135,15 @@ class FlaxBartEncoderLayerCollection(nn.Module):
|
|
306 |
layer_module(self.config, name=str(i), dtype=self.dtype)
|
307 |
for i in range(self.config.encoder_layers)
|
308 |
]
|
|
|
309 |
|
310 |
-
def __call__(
|
311 |
-
self,
|
312 |
-
hidden_states,
|
313 |
-
attention_mask,
|
314 |
-
deterministic: bool = True,
|
315 |
-
):
|
316 |
-
|
317 |
-
for encoder_layer in self.layers:
|
318 |
-
hidden_states = encoder_layer(
|
319 |
-
hidden_states,
|
320 |
-
attention_mask,
|
321 |
-
deterministic,
|
322 |
-
)
|
323 |
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
|
331 |
def setup(self) -> None:
|
332 |
self.embed_dim = self.config.d_model
|
@@ -336,21 +153,23 @@ class FlaxBartDecoderLayer(nn.Module):
|
|
336 |
num_heads=self.config.decoder_attention_heads,
|
337 |
dropout=self.config.attention_dropout,
|
338 |
causal=True,
|
|
|
339 |
dtype=self.dtype,
|
340 |
)
|
341 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
342 |
self.activation_fn = ACT2FN[self.config.activation_function]
|
343 |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
344 |
|
345 |
-
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
346 |
self.encoder_attn = FlaxBartAttention(
|
347 |
config=self.config,
|
348 |
embed_dim=self.embed_dim,
|
349 |
num_heads=self.config.decoder_attention_heads,
|
350 |
dropout=self.config.attention_dropout,
|
|
|
351 |
dtype=self.dtype,
|
352 |
)
|
353 |
-
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
354 |
self.fc1 = nn.Dense(
|
355 |
self.config.encoder_ffn_dim,
|
356 |
dtype=self.dtype,
|
@@ -363,58 +182,15 @@ class FlaxBartDecoderLayer(nn.Module):
|
|
363 |
use_bias=False,
|
364 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
365 |
)
|
366 |
-
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype)
|
367 |
-
|
368 |
-
def __call__(
|
369 |
-
self,
|
370 |
-
hidden_states: jnp.ndarray,
|
371 |
-
attention_mask: jnp.ndarray,
|
372 |
-
encoder_hidden_states: jnp.ndarray,
|
373 |
-
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
374 |
-
init_cache: bool = False,
|
375 |
-
deterministic: bool = True,
|
376 |
-
) -> Tuple[jnp.ndarray]:
|
377 |
-
residual = hidden_states
|
378 |
-
|
379 |
-
# Self Attention
|
380 |
-
hidden_states = self.self_attn(
|
381 |
-
hidden_states=hidden_states,
|
382 |
-
attention_mask=attention_mask,
|
383 |
-
init_cache=init_cache,
|
384 |
-
)
|
385 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
386 |
-
hidden_states = residual + hidden_states
|
387 |
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
388 |
-
|
389 |
-
# Cross-Attention Block
|
390 |
-
residual = hidden_states
|
391 |
-
|
392 |
-
hidden_states = self.encoder_attn(
|
393 |
-
hidden_states=hidden_states,
|
394 |
-
key_value_states=encoder_hidden_states,
|
395 |
-
attention_mask=encoder_attention_mask,
|
396 |
-
)
|
397 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
398 |
-
hidden_states = residual + hidden_states
|
399 |
-
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
400 |
-
|
401 |
-
# Fully Connected
|
402 |
-
residual = hidden_states
|
403 |
-
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
404 |
-
hidden_states = self.activation_dropout_layer(
|
405 |
-
hidden_states, deterministic=deterministic
|
406 |
-
)
|
407 |
-
hidden_states = self.fc2(hidden_states)
|
408 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
409 |
-
hidden_states = residual + hidden_states
|
410 |
-
hidden_states = self.final_layer_norm(hidden_states)
|
411 |
|
412 |
-
return hidden_states
|
413 |
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
|
|
|
|
418 |
|
419 |
def setup(self):
|
420 |
layer_module = (
|
@@ -426,35 +202,17 @@ class FlaxBartDecoderLayerCollection(nn.Module):
|
|
426 |
layer_module(self.config, name=str(i), dtype=self.dtype)
|
427 |
for i in range(self.config.decoder_layers)
|
428 |
]
|
429 |
-
|
430 |
-
def __call__(
|
431 |
-
self,
|
432 |
-
hidden_states,
|
433 |
-
attention_mask,
|
434 |
-
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
435 |
-
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
436 |
-
deterministic: bool = True,
|
437 |
-
init_cache: bool = False,
|
438 |
-
):
|
439 |
-
# decoder layers
|
440 |
-
for decoder_layer in self.layers:
|
441 |
-
hidden_states = decoder_layer(
|
442 |
-
hidden_states,
|
443 |
-
attention_mask=attention_mask,
|
444 |
-
encoder_hidden_states=encoder_hidden_states,
|
445 |
-
encoder_attention_mask=encoder_attention_mask,
|
446 |
-
init_cache=init_cache,
|
447 |
-
deterministic=deterministic,
|
448 |
-
)
|
449 |
-
|
450 |
-
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
451 |
-
last_hidden_state=hidden_states
|
452 |
-
)
|
453 |
|
454 |
|
455 |
-
class
|
456 |
-
|
457 |
-
|
|
|
|
|
|
|
|
|
|
|
458 |
|
459 |
def setup(self):
|
460 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
@@ -463,12 +221,6 @@ class DalleBartEncoder(nn.Module):
|
|
463 |
self.padding_idx = self.config.pad_token_id
|
464 |
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
465 |
|
466 |
-
self.embed_tokens = nn.Embed(
|
467 |
-
self.config.encoder_vocab_size,
|
468 |
-
embed_dim,
|
469 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
470 |
-
)
|
471 |
-
|
472 |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
473 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
474 |
self.offset = 0
|
@@ -478,42 +230,17 @@ class DalleBartEncoder(nn.Module):
|
|
478 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
479 |
)
|
480 |
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
|
481 |
-
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype)
|
482 |
-
|
483 |
-
def __call__(
|
484 |
-
self,
|
485 |
-
input_ids,
|
486 |
-
attention_mask,
|
487 |
-
position_ids,
|
488 |
-
deterministic: bool = True,
|
489 |
-
):
|
490 |
-
input_shape = input_ids.shape
|
491 |
-
input_ids = input_ids.reshape(-1, input_shape[-1])
|
492 |
-
|
493 |
-
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
494 |
-
inputs_embeds = inputs_embeds.astype(self.dtype)
|
495 |
-
|
496 |
-
embed_pos = self.embed_positions(position_ids + self.offset)
|
497 |
-
embed_pos = embed_pos.astype(self.dtype)
|
498 |
-
|
499 |
-
hidden_states = inputs_embeds + embed_pos
|
500 |
-
hidden_states = self.layernorm_embedding(hidden_states)
|
501 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
502 |
-
|
503 |
-
outputs = self.layers(
|
504 |
-
hidden_states, attention_mask, deterministic=deterministic
|
505 |
-
)
|
506 |
-
|
507 |
-
return FlaxBaseModelOutput(
|
508 |
-
last_hidden_state=outputs.last_hidden_state,
|
509 |
-
hidden_states=outputs.hidden_states,
|
510 |
-
attentions=outputs.attentions,
|
511 |
-
)
|
512 |
|
513 |
|
514 |
-
class
|
515 |
-
|
516 |
-
|
|
|
|
|
|
|
|
|
|
|
517 |
|
518 |
def setup(self):
|
519 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
@@ -524,12 +251,6 @@ class DalleBartDecoder(nn.Module):
|
|
524 |
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
525 |
)
|
526 |
|
527 |
-
self.embed_tokens = nn.Embed(
|
528 |
-
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
529 |
-
embed_dim,
|
530 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
531 |
-
)
|
532 |
-
|
533 |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
534 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
535 |
self.offset = 0
|
@@ -540,122 +261,41 @@ class DalleBartDecoder(nn.Module):
|
|
540 |
)
|
541 |
|
542 |
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
|
543 |
-
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype)
|
544 |
-
|
545 |
-
def __call__(
|
546 |
-
self,
|
547 |
-
input_ids,
|
548 |
-
attention_mask,
|
549 |
-
position_ids,
|
550 |
-
encoder_hidden_states: Optional[jnp.ndarray] = None,
|
551 |
-
encoder_attention_mask: Optional[jnp.ndarray] = None,
|
552 |
-
init_cache: bool = False,
|
553 |
-
deterministic: bool = True,
|
554 |
-
):
|
555 |
-
input_shape = input_ids.shape
|
556 |
-
input_ids = input_ids.reshape(-1, input_shape[-1])
|
557 |
|
558 |
-
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
559 |
-
inputs_embeds = inputs_embeds.astype(self.dtype)
|
560 |
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
|
569 |
-
|
570 |
-
outputs = self.layers(
|
571 |
-
hidden_states,
|
572 |
-
attention_mask,
|
573 |
-
encoder_hidden_states,
|
574 |
-
encoder_attention_mask,
|
575 |
-
deterministic=deterministic,
|
576 |
-
init_cache=init_cache,
|
577 |
-
)
|
578 |
-
|
579 |
-
return FlaxBaseModelOutputWithPastAndCrossAttentions(
|
580 |
-
last_hidden_state=outputs.last_hidden_state,
|
581 |
-
hidden_states=outputs.hidden_states,
|
582 |
-
attentions=outputs.attentions,
|
583 |
-
cross_attentions=outputs.cross_attentions,
|
584 |
-
)
|
585 |
-
|
586 |
-
|
587 |
-
class DalleBartModule(nn.Module):
|
588 |
-
config: DalleBartConfig
|
589 |
-
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
590 |
|
591 |
def setup(self):
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
return self.encoder
|
597 |
-
|
598 |
-
def _get_decoder_module(self):
|
599 |
-
return self.decoder
|
600 |
-
|
601 |
-
def __call__(
|
602 |
-
self,
|
603 |
-
input_ids,
|
604 |
-
attention_mask,
|
605 |
-
decoder_input_ids,
|
606 |
-
decoder_attention_mask,
|
607 |
-
position_ids,
|
608 |
-
decoder_position_ids,
|
609 |
-
return_dict: bool = True,
|
610 |
-
deterministic: bool = True,
|
611 |
-
):
|
612 |
-
encoder_outputs = self.encoder(
|
613 |
-
input_ids=input_ids,
|
614 |
-
attention_mask=attention_mask,
|
615 |
-
position_ids=position_ids,
|
616 |
-
deterministic=deterministic,
|
617 |
)
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
position_ids=decoder_position_ids,
|
623 |
-
encoder_hidden_states=encoder_outputs[0],
|
624 |
-
encoder_attention_mask=attention_mask,
|
625 |
-
deterministic=deterministic,
|
626 |
)
|
627 |
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
decoder_hidden_states=decoder_outputs.hidden_states,
|
634 |
-
decoder_attentions=decoder_outputs.attentions,
|
635 |
-
cross_attentions=decoder_outputs.cross_attentions,
|
636 |
-
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
637 |
-
encoder_hidden_states=encoder_outputs.hidden_states,
|
638 |
-
encoder_attentions=encoder_outputs.attentions,
|
639 |
)
|
640 |
|
641 |
|
642 |
-
class
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
def __init__(
|
648 |
-
self,
|
649 |
-
config: DalleBartConfig,
|
650 |
-
input_shape: Tuple[int] = (1, 1),
|
651 |
-
seed: int = 0,
|
652 |
-
dtype: jnp.dtype = jnp.float32,
|
653 |
-
**kwargs,
|
654 |
-
):
|
655 |
-
module = self.module_class(config=config, dtype=dtype)
|
656 |
-
super().__init__(
|
657 |
-
config, module, input_shape=input_shape, seed=seed, dtype=dtype, **kwargs
|
658 |
-
)
|
659 |
|
660 |
@property
|
661 |
def num_params(self):
|
@@ -664,213 +304,23 @@ class DalleBartPreTrainedModel(FlaxPreTrainedModel):
|
|
664 |
).values()
|
665 |
return sum(list(num_params))
|
666 |
|
667 |
-
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
668 |
-
# init input tensors
|
669 |
-
input_ids = jnp.zeros(input_shape, dtype="i4")
|
670 |
-
# make sure initialization pass will work for FlaxBartForSequenceClassificationModule
|
671 |
-
input_ids = jax.ops.index_update(input_ids, (..., -1), self.config.eos_token_id)
|
672 |
-
attention_mask = jnp.ones_like(input_ids)
|
673 |
-
decoder_input_ids = input_ids
|
674 |
-
decoder_attention_mask = jnp.ones_like(input_ids)
|
675 |
-
|
676 |
-
batch_size, sequence_length = input_ids.shape
|
677 |
-
position_ids = jnp.broadcast_to(
|
678 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
679 |
-
)
|
680 |
-
decoder_position_ids = jnp.broadcast_to(
|
681 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
682 |
-
)
|
683 |
-
|
684 |
-
params_rng, dropout_rng = jax.random.split(rng)
|
685 |
-
rngs = {"params": params_rng, "dropout": dropout_rng}
|
686 |
-
|
687 |
-
return self.module.init(
|
688 |
-
rngs,
|
689 |
-
input_ids,
|
690 |
-
attention_mask,
|
691 |
-
decoder_input_ids,
|
692 |
-
decoder_attention_mask,
|
693 |
-
position_ids,
|
694 |
-
decoder_position_ids,
|
695 |
-
)["params"]
|
696 |
-
|
697 |
-
def init_cache(self, batch_size, max_length, encoder_outputs):
|
698 |
-
r"""
|
699 |
-
Args:
|
700 |
-
batch_size (:obj:`int`):
|
701 |
-
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
702 |
-
max_length (:obj:`int`):
|
703 |
-
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
704 |
-
cache.
|
705 |
-
encoder_outputs (:obj:`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
|
706 |
-
``encoder_outputs`` consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`,
|
707 |
-
`optional`: :obj:`attentions`). :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length,
|
708 |
-
hidden_size)`, `optional`) is a sequence of hidden-states at the output of the last layer of the
|
709 |
-
encoder. Used in the cross-attention of the decoder.
|
710 |
-
"""
|
711 |
-
# init input variables to retrieve cache
|
712 |
-
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
|
713 |
-
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
714 |
-
decoder_position_ids = jnp.broadcast_to(
|
715 |
-
jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]),
|
716 |
-
decoder_input_ids.shape,
|
717 |
-
)
|
718 |
-
|
719 |
-
def _decoder_forward(
|
720 |
-
module,
|
721 |
-
decoder_input_ids,
|
722 |
-
decoder_attention_mask,
|
723 |
-
decoder_position_ids,
|
724 |
-
**kwargs,
|
725 |
-
):
|
726 |
-
decoder_module = module._get_decoder_module()
|
727 |
-
return decoder_module(
|
728 |
-
decoder_input_ids,
|
729 |
-
decoder_attention_mask,
|
730 |
-
decoder_position_ids,
|
731 |
-
**kwargs,
|
732 |
-
)
|
733 |
-
|
734 |
-
init_variables = self.module.init(
|
735 |
-
jax.random.PRNGKey(0),
|
736 |
-
decoder_input_ids=decoder_input_ids,
|
737 |
-
decoder_attention_mask=decoder_attention_mask,
|
738 |
-
decoder_position_ids=decoder_position_ids,
|
739 |
-
encoder_hidden_states=encoder_outputs[0],
|
740 |
-
init_cache=True,
|
741 |
-
method=_decoder_forward, # we only need to call the decoder to init the cache
|
742 |
-
)
|
743 |
-
return unfreeze(init_variables["cache"])
|
744 |
-
|
745 |
-
def encode(
|
746 |
-
self,
|
747 |
-
input_ids: jnp.ndarray,
|
748 |
-
attention_mask: Optional[jnp.ndarray] = None,
|
749 |
-
position_ids: Optional[jnp.ndarray] = None,
|
750 |
-
train: bool = False,
|
751 |
-
params: dict = None,
|
752 |
-
dropout_rng: PRNGKey = None,
|
753 |
-
):
|
754 |
-
r"""
|
755 |
-
Returns:
|
756 |
-
|
757 |
-
Example::
|
758 |
-
|
759 |
-
>>> from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
760 |
-
|
761 |
-
>>> model = FlaxBartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
762 |
-
>>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
763 |
-
|
764 |
-
>>> text = "My friends are cool but they eat too many carbs."
|
765 |
-
>>> inputs = tokenizer(text, max_length=1024, return_tensors='jax')
|
766 |
-
>>> encoder_outputs = model.encode(**inputs)
|
767 |
-
"""
|
768 |
-
if attention_mask is None:
|
769 |
-
attention_mask = jnp.ones_like(input_ids)
|
770 |
-
if position_ids is None:
|
771 |
-
batch_size, sequence_length = input_ids.shape
|
772 |
-
position_ids = jnp.broadcast_to(
|
773 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
774 |
-
)
|
775 |
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
return encode_module(input_ids, attention_mask, position_ids, **kwargs)
|
784 |
-
|
785 |
-
return self.module.apply(
|
786 |
-
{"params": params or self.params},
|
787 |
-
input_ids=jnp.array(input_ids, dtype="i4"),
|
788 |
-
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
789 |
-
position_ids=jnp.array(position_ids, dtype="i4"),
|
790 |
-
deterministic=not train,
|
791 |
-
rngs=rngs,
|
792 |
-
method=_encoder_forward,
|
793 |
-
)
|
794 |
-
|
795 |
-
def __call__(
|
796 |
-
self,
|
797 |
-
input_ids: jnp.ndarray,
|
798 |
-
attention_mask: Optional[jnp.ndarray] = None,
|
799 |
-
decoder_input_ids: Optional[jnp.ndarray] = None,
|
800 |
-
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
801 |
-
position_ids: Optional[jnp.ndarray] = None,
|
802 |
-
decoder_position_ids: Optional[jnp.ndarray] = None,
|
803 |
-
return_dict: Optional[bool] = None,
|
804 |
-
train: bool = False,
|
805 |
-
params: dict = None,
|
806 |
-
dropout_rng: PRNGKey = None,
|
807 |
-
):
|
808 |
-
return_dict = (
|
809 |
-
return_dict if return_dict is not None else self.config.return_dict
|
810 |
-
)
|
811 |
-
|
812 |
-
# prepare encoder inputs
|
813 |
-
if attention_mask is None:
|
814 |
-
attention_mask = jnp.ones_like(input_ids)
|
815 |
-
if position_ids is None:
|
816 |
-
batch_size, sequence_length = input_ids.shape
|
817 |
-
position_ids = jnp.broadcast_to(
|
818 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
819 |
-
)
|
820 |
-
|
821 |
-
# prepare decoder inputs
|
822 |
-
if decoder_input_ids is None:
|
823 |
-
decoder_input_ids = shift_tokens_right(
|
824 |
-
input_ids,
|
825 |
-
self.config.pad_token_id,
|
826 |
-
decoder_start_token_id=self.config.decoder_start_token_id,
|
827 |
-
)
|
828 |
-
if decoder_attention_mask is None:
|
829 |
-
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
|
830 |
-
if decoder_position_ids is None:
|
831 |
-
batch_size, sequence_length = decoder_input_ids.shape
|
832 |
-
decoder_position_ids = jnp.broadcast_to(
|
833 |
-
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
|
834 |
-
)
|
835 |
-
|
836 |
-
# Handle any PRNG if needed
|
837 |
-
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
838 |
-
|
839 |
-
return self.module.apply(
|
840 |
-
{"params": params or self.params},
|
841 |
-
input_ids=jnp.array(input_ids, dtype="i4"),
|
842 |
-
attention_mask=jnp.array(attention_mask, dtype="i4"),
|
843 |
-
position_ids=jnp.array(position_ids, dtype="i4"),
|
844 |
-
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
|
845 |
-
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
|
846 |
-
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
847 |
-
deterministic=not train,
|
848 |
-
rngs=rngs,
|
849 |
-
)
|
850 |
-
|
851 |
-
|
852 |
-
class DalleBartForConditionalGenerationModule(nn.Module):
|
853 |
-
config: DalleBartConfig
|
854 |
-
dtype: jnp.dtype = jnp.float32
|
855 |
-
bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
|
856 |
|
857 |
def setup(self):
|
858 |
-
self.model =
|
859 |
self.lm_head = nn.Dense(
|
860 |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
861 |
use_bias=False,
|
862 |
dtype=self.dtype,
|
863 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
864 |
)
|
865 |
-
self.final_logits_bias = self.param(
|
866 |
-
"final_logits_bias", self.bias_init, (1, self.config.image_vocab_size + 1)
|
867 |
-
)
|
868 |
-
|
869 |
-
def _get_encoder_module(self):
|
870 |
-
return self.model.encoder
|
871 |
-
|
872 |
-
def _get_decoder_module(self):
|
873 |
-
return self.model.decoder
|
874 |
|
875 |
def __call__(
|
876 |
self,
|
@@ -880,6 +330,9 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
880 |
decoder_attention_mask,
|
881 |
position_ids,
|
882 |
decoder_position_ids,
|
|
|
|
|
|
|
883 |
deterministic: bool = True,
|
884 |
):
|
885 |
outputs = self.model(
|
@@ -889,6 +342,9 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
889 |
decoder_attention_mask=decoder_attention_mask,
|
890 |
position_ids=position_ids,
|
891 |
decoder_position_ids=decoder_position_ids,
|
|
|
|
|
|
|
892 |
deterministic=deterministic,
|
893 |
)
|
894 |
|
@@ -902,6 +358,10 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
902 |
else:
|
903 |
lm_logits = self.lm_head(hidden_states)
|
904 |
|
|
|
|
|
|
|
|
|
905 |
return FlaxSeq2SeqLMOutput(
|
906 |
logits=lm_logits,
|
907 |
decoder_hidden_states=outputs.decoder_hidden_states,
|
@@ -913,9 +373,16 @@ class DalleBartForConditionalGenerationModule(nn.Module):
|
|
913 |
)
|
914 |
|
915 |
|
916 |
-
class
|
917 |
-
|
918 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
919 |
|
920 |
def decode(
|
921 |
self,
|
@@ -925,30 +392,27 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
925 |
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
926 |
decoder_position_ids: Optional[jnp.ndarray] = None,
|
927 |
past_key_values: dict = None,
|
|
|
|
|
|
|
928 |
train: bool = False,
|
929 |
params: dict = None,
|
930 |
dropout_rng: PRNGKey = None,
|
931 |
):
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
>>> decoder_start_token_id = model.config.decoder_start_token_id
|
947 |
-
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
|
948 |
|
949 |
-
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
|
950 |
-
>>> logits = outputs.logits
|
951 |
-
"""
|
952 |
encoder_hidden_states = encoder_outputs[0]
|
953 |
if encoder_attention_mask is None:
|
954 |
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
@@ -1010,7 +474,6 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
1010 |
else:
|
1011 |
lm_logits = module.lm_head(hidden_states)
|
1012 |
|
1013 |
-
lm_logits += module.final_logits_bias
|
1014 |
return lm_logits, outputs
|
1015 |
|
1016 |
outputs = self.module.apply(
|
@@ -1020,6 +483,9 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
1020 |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
1021 |
encoder_hidden_states=encoder_hidden_states,
|
1022 |
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
|
|
|
|
|
|
1023 |
deterministic=not train,
|
1024 |
rngs=rngs,
|
1025 |
mutable=mutable,
|
@@ -1031,58 +497,21 @@ class DalleBartForConditionalGeneration(DalleBartPreTrainedModel):
|
|
1031 |
else:
|
1032 |
(lm_logits, decoder_outputs), past = outputs
|
1033 |
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
|
|
|
|
|
|
1040 |
|
1041 |
# add updated cache to model output
|
1042 |
-
if past_key_values is not None:
|
1043 |
outputs["past_key_values"] = unfreeze(past["cache"])
|
1044 |
return outputs
|
|
|
|
|
1045 |
|
1046 |
return outputs
|
1047 |
-
|
1048 |
-
def prepare_inputs_for_generation(
|
1049 |
-
self,
|
1050 |
-
decoder_input_ids,
|
1051 |
-
max_length,
|
1052 |
-
attention_mask: Optional[jnp.DeviceArray] = None,
|
1053 |
-
decoder_attention_mask: Optional[jnp.DeviceArray] = None,
|
1054 |
-
encoder_outputs=None,
|
1055 |
-
**kwargs,
|
1056 |
-
):
|
1057 |
-
# initializing the cache
|
1058 |
-
batch_size, seq_length = decoder_input_ids.shape
|
1059 |
-
|
1060 |
-
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
|
1061 |
-
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
1062 |
-
# But since the decoder uses a causal mask, those positions are masked anyways.
|
1063 |
-
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
1064 |
-
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
1065 |
-
if decoder_attention_mask is not None:
|
1066 |
-
position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
|
1067 |
-
extended_attention_mask = lax.dynamic_update_slice(
|
1068 |
-
extended_attention_mask, decoder_attention_mask, (0, 0)
|
1069 |
-
)
|
1070 |
-
else:
|
1071 |
-
position_ids = jnp.broadcast_to(
|
1072 |
-
jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)
|
1073 |
-
)
|
1074 |
-
|
1075 |
-
return {
|
1076 |
-
"past_key_values": past_key_values,
|
1077 |
-
"encoder_outputs": encoder_outputs,
|
1078 |
-
"encoder_attention_mask": attention_mask,
|
1079 |
-
"decoder_attention_mask": extended_attention_mask,
|
1080 |
-
"decoder_position_ids": position_ids,
|
1081 |
-
}
|
1082 |
-
|
1083 |
-
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
1084 |
-
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
1085 |
-
model_kwargs["decoder_position_ids"] = (
|
1086 |
-
model_kwargs["decoder_position_ids"][:, -1:] + 1
|
1087 |
-
)
|
1088 |
-
return model_kwargs
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and the DalleBart team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
+
""" DalleBart model. """
|
16 |
|
17 |
import math
|
18 |
from functools import partial
|
19 |
+
from typing import Optional
|
20 |
|
21 |
import flax.linen as nn
|
22 |
import jax
|
23 |
import jax.numpy as jnp
|
24 |
+
from flax.core.frozen_dict import unfreeze
|
25 |
+
from flax.linen import make_causal_mask
|
|
|
|
|
26 |
from flax.traverse_util import flatten_dict
|
|
|
27 |
from jax.random import PRNGKey
|
28 |
from transformers.modeling_flax_outputs import (
|
|
|
|
|
29 |
FlaxCausalLMOutputWithCrossAttentions,
|
30 |
FlaxSeq2SeqLMOutput,
|
|
|
31 |
)
|
32 |
+
from transformers.modeling_flax_utils import ACT2FN
|
33 |
from transformers.utils import logging
|
34 |
|
35 |
+
from transformers.models.bart.modeling_flax_bart import (
|
36 |
+
FlaxBartAttention,
|
37 |
+
FlaxBartEncoderLayer,
|
38 |
+
FlaxBartDecoderLayer,
|
39 |
+
FlaxBartEncoderLayerCollection,
|
40 |
+
FlaxBartDecoderLayerCollection,
|
41 |
+
FlaxBartEncoder,
|
42 |
+
FlaxBartDecoder,
|
43 |
+
FlaxBartModule,
|
44 |
+
FlaxBartForConditionalGenerationModule,
|
45 |
+
FlaxBartPreTrainedModel,
|
46 |
+
FlaxBartForConditionalGeneration,
|
47 |
+
)
|
48 |
|
49 |
logger = logging.get_logger(__name__)
|
50 |
|
51 |
|
52 |
+
class FlaxBartAttention(FlaxBartAttention):
|
|
|
|
|
53 |
"""
|
54 |
+
Edits:
|
55 |
+
- causal mask considers embed_dim instead of max_position_embeddings
|
56 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
def setup(self) -> None:
|
59 |
self.head_dim = self.embed_dim // self.num_heads
|
60 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
61 |
+
raise ValueError(
|
62 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
63 |
+
f" and `num_heads`: {self.num_heads})."
|
64 |
+
)
|
65 |
|
66 |
dense = partial(
|
67 |
nn.Dense,
|
68 |
self.embed_dim,
|
69 |
+
use_bias=self.bias,
|
70 |
dtype=self.dtype,
|
71 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
72 |
)
|
|
|
81 |
jnp.ones((1, self.embed_dim), dtype="bool"), dtype="bool"
|
82 |
)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
class FlaxBartEncoderLayer(FlaxBartEncoderLayer):
|
86 |
+
"""
|
87 |
+
Edits:
|
88 |
+
- no bias
|
89 |
+
- use custom FlaxBartAttention
|
90 |
+
"""
|
91 |
|
92 |
def setup(self) -> None:
|
93 |
self.embed_dim = self.config.d_model
|
|
|
96 |
embed_dim=self.embed_dim,
|
97 |
num_heads=self.config.encoder_attention_heads,
|
98 |
dropout=self.config.attention_dropout,
|
99 |
+
bias=False,
|
100 |
dtype=self.dtype,
|
101 |
)
|
102 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
103 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
104 |
self.activation_fn = ACT2FN[self.config.activation_function]
|
105 |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
|
|
115 |
use_bias=False,
|
116 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
117 |
)
|
118 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
+
class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection):
|
122 |
+
"""
|
123 |
+
Edits:
|
124 |
+
- use custom FlaxBartEncoderLayer
|
125 |
+
- allow Gradient Checkpointing (nn.remat)
|
126 |
+
"""
|
127 |
|
128 |
def setup(self):
|
129 |
layer_module = (
|
|
|
135 |
layer_module(self.config, name=str(i), dtype=self.dtype)
|
136 |
for i in range(self.config.encoder_layers)
|
137 |
]
|
138 |
+
self.layerdrop = self.config.encoder_layerdrop
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
class FlaxBartDecoderLayer(FlaxBartDecoderLayer):
|
142 |
+
"""
|
143 |
+
Edits:
|
144 |
+
- no bias
|
145 |
+
- uses custom FlaxBartAttention
|
146 |
+
"""
|
147 |
|
148 |
def setup(self) -> None:
|
149 |
self.embed_dim = self.config.d_model
|
|
|
153 |
num_heads=self.config.decoder_attention_heads,
|
154 |
dropout=self.config.attention_dropout,
|
155 |
causal=True,
|
156 |
+
bias=False,
|
157 |
dtype=self.dtype,
|
158 |
)
|
159 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
160 |
self.activation_fn = ACT2FN[self.config.activation_function]
|
161 |
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
|
162 |
|
163 |
+
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
164 |
self.encoder_attn = FlaxBartAttention(
|
165 |
config=self.config,
|
166 |
embed_dim=self.embed_dim,
|
167 |
num_heads=self.config.decoder_attention_heads,
|
168 |
dropout=self.config.attention_dropout,
|
169 |
+
bias=False,
|
170 |
dtype=self.dtype,
|
171 |
)
|
172 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
173 |
self.fc1 = nn.Dense(
|
174 |
self.config.encoder_ffn_dim,
|
175 |
dtype=self.dtype,
|
|
|
182 |
use_bias=False,
|
183 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
184 |
)
|
185 |
+
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
|
|
187 |
|
188 |
+
class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection):
|
189 |
+
"""
|
190 |
+
Edits:
|
191 |
+
- use custom FlaxBartDecoderLayer
|
192 |
+
- allow Gradient Checkpointing (nn.remat)
|
193 |
+
"""
|
194 |
|
195 |
def setup(self):
|
196 |
layer_module = (
|
|
|
202 |
layer_module(self.config, name=str(i), dtype=self.dtype)
|
203 |
for i in range(self.config.decoder_layers)
|
204 |
]
|
205 |
+
self.layerdrop = self.config.decoder_layerdrop
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
|
208 |
+
class FlaxBartEncoder(FlaxBartEncoder):
|
209 |
+
"""
|
210 |
+
Edits:
|
211 |
+
- offset set to 0 (no padding token)
|
212 |
+
- use max_text_length instead of max_position_embeddings
|
213 |
+
- use custom FlaxBartEncoderLayerCollection
|
214 |
+
- embed_tokens cannot be None (issue at compile time)
|
215 |
+
"""
|
216 |
|
217 |
def setup(self):
|
218 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
|
|
221 |
self.padding_idx = self.config.pad_token_id
|
222 |
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
225 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
226 |
self.offset = 0
|
|
|
230 |
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
231 |
)
|
232 |
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
|
233 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
|
236 |
+
class FlaxBartDecoder(FlaxBartDecoder):
|
237 |
+
"""
|
238 |
+
Edits:
|
239 |
+
- offset set to 0 (no padding token)
|
240 |
+
- use image_length + 1 (for BOS) instead of max_position_embeddings
|
241 |
+
- use custom FlaxBartDecoderLayerCollection
|
242 |
+
- embed_tokens cannot be None (issue at compile time)
|
243 |
+
"""
|
244 |
|
245 |
def setup(self):
|
246 |
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
|
|
|
251 |
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
|
252 |
)
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
|
255 |
# and adjust num_embeddings appropriately. Other models don't have this hack
|
256 |
self.offset = 0
|
|
|
261 |
)
|
262 |
|
263 |
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
|
264 |
+
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
|
|
|
|
266 |
|
267 |
+
class FlaxBartModule(FlaxBartModule):
|
268 |
+
"""
|
269 |
+
Edits
|
270 |
+
- use custom FlaxBartEncoder & FlaxBartDecoder
|
271 |
+
- use separate embeddings for Encoder & Decoder
|
272 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
def setup(self):
|
275 |
+
encoder_embed_tokens = nn.Embed(
|
276 |
+
self.config.encoder_vocab_size,
|
277 |
+
self.config.d_model,
|
278 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
)
|
280 |
+
decoder_embed_tokens = nn.Embed(
|
281 |
+
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
282 |
+
self.config.d_model,
|
283 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
|
|
|
|
|
|
|
284 |
)
|
285 |
|
286 |
+
self.encoder = FlaxBartEncoder(
|
287 |
+
self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens
|
288 |
+
)
|
289 |
+
self.decoder = FlaxBartDecoder(
|
290 |
+
self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
)
|
292 |
|
293 |
|
294 |
+
class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel):
|
295 |
+
"""
|
296 |
+
Edits:
|
297 |
+
- added num_params property
|
298 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
@property
|
301 |
def num_params(self):
|
|
|
304 |
).values()
|
305 |
return sum(list(num_params))
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
+
class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
309 |
+
"""
|
310 |
+
Edits:
|
311 |
+
- no bias
|
312 |
+
- lm_head set to image_vocab_size + 1 (for BOS)
|
313 |
+
- uses custom FlaxBartModule
|
314 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
def setup(self):
|
317 |
+
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
|
318 |
self.lm_head = nn.Dense(
|
319 |
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
|
320 |
use_bias=False,
|
321 |
dtype=self.dtype,
|
322 |
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
323 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
|
325 |
def __call__(
|
326 |
self,
|
|
|
330 |
decoder_attention_mask,
|
331 |
position_ids,
|
332 |
decoder_position_ids,
|
333 |
+
output_attentions: bool = False,
|
334 |
+
output_hidden_states: bool = False,
|
335 |
+
return_dict: bool = True,
|
336 |
deterministic: bool = True,
|
337 |
):
|
338 |
outputs = self.model(
|
|
|
342 |
decoder_attention_mask=decoder_attention_mask,
|
343 |
position_ids=position_ids,
|
344 |
decoder_position_ids=decoder_position_ids,
|
345 |
+
output_attentions=output_attentions,
|
346 |
+
output_hidden_states=output_hidden_states,
|
347 |
+
return_dict=return_dict,
|
348 |
deterministic=deterministic,
|
349 |
)
|
350 |
|
|
|
358 |
else:
|
359 |
lm_logits = self.lm_head(hidden_states)
|
360 |
|
361 |
+
if not return_dict:
|
362 |
+
output = (lm_logits,) + outputs[1:]
|
363 |
+
return output
|
364 |
+
|
365 |
return FlaxSeq2SeqLMOutput(
|
366 |
logits=lm_logits,
|
367 |
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
|
373 |
)
|
374 |
|
375 |
|
376 |
+
class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration):
|
377 |
+
"""
|
378 |
+
Edits:
|
379 |
+
- renamed from FlaxBartForConditionalGeneration
|
380 |
+
- uses custom FlaxBartPreTrainedModel
|
381 |
+
- uses custom FlaxBartForConditionalGenerationModule
|
382 |
+
- no bias in decode method
|
383 |
+
"""
|
384 |
+
|
385 |
+
module_class = FlaxBartForConditionalGenerationModule
|
386 |
|
387 |
def decode(
|
388 |
self,
|
|
|
392 |
decoder_attention_mask: Optional[jnp.ndarray] = None,
|
393 |
decoder_position_ids: Optional[jnp.ndarray] = None,
|
394 |
past_key_values: dict = None,
|
395 |
+
output_attentions: Optional[bool] = None,
|
396 |
+
output_hidden_states: Optional[bool] = None,
|
397 |
+
return_dict: Optional[bool] = None,
|
398 |
train: bool = False,
|
399 |
params: dict = None,
|
400 |
dropout_rng: PRNGKey = None,
|
401 |
):
|
402 |
+
output_attentions = (
|
403 |
+
output_attentions
|
404 |
+
if output_attentions is not None
|
405 |
+
else self.config.output_attentions
|
406 |
+
)
|
407 |
+
output_hidden_states = (
|
408 |
+
output_hidden_states
|
409 |
+
if output_hidden_states is not None
|
410 |
+
else self.config.output_hidden_states
|
411 |
+
)
|
412 |
+
return_dict = (
|
413 |
+
return_dict if return_dict is not None else self.config.return_dict
|
414 |
+
)
|
|
|
|
|
|
|
415 |
|
|
|
|
|
|
|
416 |
encoder_hidden_states = encoder_outputs[0]
|
417 |
if encoder_attention_mask is None:
|
418 |
batch_size, sequence_length = encoder_hidden_states.shape[:2]
|
|
|
474 |
else:
|
475 |
lm_logits = module.lm_head(hidden_states)
|
476 |
|
|
|
477 |
return lm_logits, outputs
|
478 |
|
479 |
outputs = self.module.apply(
|
|
|
483 |
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
|
484 |
encoder_hidden_states=encoder_hidden_states,
|
485 |
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
|
486 |
+
output_attentions=output_attentions,
|
487 |
+
output_hidden_states=output_hidden_states,
|
488 |
+
return_dict=return_dict,
|
489 |
deterministic=not train,
|
490 |
rngs=rngs,
|
491 |
mutable=mutable,
|
|
|
497 |
else:
|
498 |
(lm_logits, decoder_outputs), past = outputs
|
499 |
|
500 |
+
if return_dict:
|
501 |
+
outputs = FlaxCausalLMOutputWithCrossAttentions(
|
502 |
+
logits=lm_logits,
|
503 |
+
hidden_states=decoder_outputs.hidden_states,
|
504 |
+
attentions=decoder_outputs.attentions,
|
505 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
506 |
+
)
|
507 |
+
else:
|
508 |
+
outputs = (lm_logits,) + decoder_outputs[1:]
|
509 |
|
510 |
# add updated cache to model output
|
511 |
+
if past_key_values is not None and return_dict:
|
512 |
outputs["past_key_values"] = unfreeze(past["cache"])
|
513 |
return outputs
|
514 |
+
elif past_key_values is not None and not return_dict:
|
515 |
+
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
|
516 |
|
517 |
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|