Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
•
adfe05e
1
Parent(s):
cb2ac60
Add dalle_mini directory module.
Browse filesIt hosts a copy of VQGAN-JAX.
Former-commit-id: b859c49e7e9d8728c93882ce11ffdb137630de33
app/dalle_mini/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__version__ = "0.0.1"
|
app/dalle_mini/dataset.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
An image-caption dataset dataloader.
|
3 |
+
Luke Melas-Kyriazi, 2021
|
4 |
+
"""
|
5 |
+
import warnings
|
6 |
+
from typing import Optional, Callable
|
7 |
+
from pathlib import Path
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import pandas as pd
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
from torchvision.datasets.folder import default_loader
|
13 |
+
from PIL import ImageFile
|
14 |
+
from PIL.Image import DecompressionBombWarning
|
15 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
16 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
17 |
+
warnings.filterwarnings("ignore", category=DecompressionBombWarning)
|
18 |
+
|
19 |
+
|
20 |
+
class CaptionDataset(Dataset):
|
21 |
+
"""
|
22 |
+
A PyTorch Dataset class for (image, texts) tasks. Note that this dataset
|
23 |
+
returns the raw text rather than tokens. This is done on purpose, because
|
24 |
+
it's easy to tokenize a batch of text after loading it from this dataset.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, *, images_root: str, captions_path: str, text_transform: Optional[Callable] = None,
|
28 |
+
image_transform: Optional[Callable] = None, image_transform_type: str = 'torchvision',
|
29 |
+
include_captions: bool = True):
|
30 |
+
"""
|
31 |
+
:param images_root: folder where images are stored
|
32 |
+
:param captions_path: path to csv that maps image filenames to captions
|
33 |
+
:param image_transform: image transform pipeline
|
34 |
+
:param text_transform: image transform pipeline
|
35 |
+
:param image_transform_type: image transform type, either `torchvision` or `albumentations`
|
36 |
+
:param include_captions: Returns a dictionary with `image`, `text` if `true`; otherwise returns just the images.
|
37 |
+
"""
|
38 |
+
|
39 |
+
# Base path for images
|
40 |
+
self.images_root = Path(images_root)
|
41 |
+
|
42 |
+
# Load captions as DataFrame
|
43 |
+
self.captions = pd.read_csv(captions_path, delimiter='\t', header=0)
|
44 |
+
self.captions['image_file'] = self.captions['image_file'].astype(str)
|
45 |
+
|
46 |
+
# PyTorch transformation pipeline for the image (normalizing, etc.)
|
47 |
+
self.text_transform = text_transform
|
48 |
+
self.image_transform = image_transform
|
49 |
+
self.image_transform_type = image_transform_type.lower()
|
50 |
+
assert self.image_transform_type in ['torchvision', 'albumentations']
|
51 |
+
|
52 |
+
# Total number of datapoints
|
53 |
+
self.size = len(self.captions)
|
54 |
+
|
55 |
+
# Return image+captions or just images
|
56 |
+
self.include_captions = include_captions
|
57 |
+
|
58 |
+
def verify_that_all_images_exist(self):
|
59 |
+
for image_file in self.captions['image_file']:
|
60 |
+
p = self.images_root / image_file
|
61 |
+
if not p.is_file():
|
62 |
+
print(f'file does not exist: {p}')
|
63 |
+
|
64 |
+
def _get_raw_image(self, i):
|
65 |
+
image_file = self.captions.iloc[i]['image_file']
|
66 |
+
image_path = self.images_root / image_file
|
67 |
+
image = default_loader(image_path)
|
68 |
+
return image
|
69 |
+
|
70 |
+
def _get_raw_text(self, i):
|
71 |
+
return self.captions.iloc[i]['caption']
|
72 |
+
|
73 |
+
def __getitem__(self, i):
|
74 |
+
image = self._get_raw_image(i)
|
75 |
+
caption = self._get_raw_text(i)
|
76 |
+
if self.image_transform is not None:
|
77 |
+
if self.image_transform_type == 'torchvision':
|
78 |
+
image = self.image_transform(image)
|
79 |
+
elif self.image_transform_type == 'albumentations':
|
80 |
+
image = self.image_transform(image=np.array(image))['image']
|
81 |
+
else:
|
82 |
+
raise NotImplementedError(f"{self.image_transform_type=}")
|
83 |
+
return {'image': image, 'text': caption} if self.include_captions else image
|
84 |
+
|
85 |
+
def __len__(self):
|
86 |
+
return self.size
|
87 |
+
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
import albumentations as A
|
91 |
+
from albumentations.pytorch import ToTensorV2
|
92 |
+
from transformers import AutoTokenizer
|
93 |
+
|
94 |
+
# Paths
|
95 |
+
images_root = './images'
|
96 |
+
captions_path = './images-list-clean.tsv'
|
97 |
+
|
98 |
+
# Create transforms
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained('distilroberta-base')
|
100 |
+
def tokenize(text):
|
101 |
+
return tokenizer(text, max_length=32, truncation=True, return_tensors='pt', padding='max_length')
|
102 |
+
image_transform = A.Compose([
|
103 |
+
A.Resize(256, 256), A.CenterCrop(256, 256),
|
104 |
+
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ToTensorV2()])
|
105 |
+
|
106 |
+
# Create dataset
|
107 |
+
dataset = CaptionDataset(
|
108 |
+
images_root=images_root,
|
109 |
+
captions_path=captions_path,
|
110 |
+
image_transform=image_transform,
|
111 |
+
text_transform=tokenize,
|
112 |
+
image_transform_type='albumentations')
|
113 |
+
|
114 |
+
# Create dataloader
|
115 |
+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=2)
|
116 |
+
batch = next(iter(dataloader))
|
117 |
+
print({k: (v.shape if isinstance(v, torch.Tensor) else v) for k, v in batch.items()})
|
118 |
+
|
119 |
+
# # (Optional) Check that all the images exist
|
120 |
+
# dataset = CaptionDataset(images_root=images_root, captions_path=captions_path)
|
121 |
+
# dataset.verify_that_all_images_exist()
|
122 |
+
# print('Done')
|
app/dalle_mini/vqgan_jax/__init__.py
ADDED
File without changes
|
app/dalle_mini/vqgan_jax/configuration_vqgan.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
|
5 |
+
|
6 |
+
class VQGANConfig(PretrainedConfig):
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
ch: int = 128,
|
10 |
+
out_ch: int = 3,
|
11 |
+
in_channels: int = 3,
|
12 |
+
num_res_blocks: int = 2,
|
13 |
+
resolution: int = 256,
|
14 |
+
z_channels: int = 256,
|
15 |
+
ch_mult: Tuple = (1, 1, 2, 2, 4),
|
16 |
+
attn_resolutions: int = (16,),
|
17 |
+
n_embed: int = 1024,
|
18 |
+
embed_dim: int = 256,
|
19 |
+
dropout: float = 0.0,
|
20 |
+
double_z: bool = False,
|
21 |
+
resamp_with_conv: bool = True,
|
22 |
+
give_pre_end: bool = False,
|
23 |
+
**kwargs,
|
24 |
+
):
|
25 |
+
super().__init__(**kwargs)
|
26 |
+
self.ch = ch
|
27 |
+
self.out_ch = out_ch
|
28 |
+
self.in_channels = in_channels
|
29 |
+
self.num_res_blocks = num_res_blocks
|
30 |
+
self.resolution = resolution
|
31 |
+
self.z_channels = z_channels
|
32 |
+
self.ch_mult = list(ch_mult)
|
33 |
+
self.attn_resolutions = list(attn_resolutions)
|
34 |
+
self.n_embed = n_embed
|
35 |
+
self.embed_dim = embed_dim
|
36 |
+
self.dropout = dropout
|
37 |
+
self.double_z = double_z
|
38 |
+
self.resamp_with_conv = resamp_with_conv
|
39 |
+
self.give_pre_end = give_pre_end
|
40 |
+
self.num_resolutions = len(ch_mult)
|
app/dalle_mini/vqgan_jax/convert_pt_model_to_jax.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import jax.numpy as jnp
|
4 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from modeling_flax_vqgan import VQModel
|
9 |
+
from configuration_vqgan import VQGANConfig
|
10 |
+
|
11 |
+
|
12 |
+
regex = r"\w+[.]\d+"
|
13 |
+
|
14 |
+
|
15 |
+
def rename_key(key):
|
16 |
+
pats = re.findall(regex, key)
|
17 |
+
for pat in pats:
|
18 |
+
key = key.replace(pat, "_".join(pat.split(".")))
|
19 |
+
return key
|
20 |
+
|
21 |
+
|
22 |
+
# Adapted from https://github.com/huggingface/transformers/blob/ff5cdc086be1e0c3e2bbad8e3469b34cffb55a85/src/transformers/modeling_flax_pytorch_utils.py#L61
|
23 |
+
def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model):
|
24 |
+
# convert pytorch tensor to numpy
|
25 |
+
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
|
26 |
+
|
27 |
+
random_flax_state_dict = flatten_dict(flax_model.params)
|
28 |
+
flax_state_dict = {}
|
29 |
+
|
30 |
+
remove_base_model_prefix = (flax_model.base_model_prefix not in flax_model.params) and (
|
31 |
+
flax_model.base_model_prefix in set([k.split(".")[0] for k in pt_state_dict.keys()])
|
32 |
+
)
|
33 |
+
add_base_model_prefix = (flax_model.base_model_prefix in flax_model.params) and (
|
34 |
+
flax_model.base_model_prefix not in set([k.split(".")[0] for k in pt_state_dict.keys()])
|
35 |
+
)
|
36 |
+
|
37 |
+
# Need to change some parameters name to match Flax names so that we don't have to fork any layer
|
38 |
+
for pt_key, pt_tensor in pt_state_dict.items():
|
39 |
+
pt_tuple_key = tuple(pt_key.split("."))
|
40 |
+
|
41 |
+
has_base_model_prefix = pt_tuple_key[0] == flax_model.base_model_prefix
|
42 |
+
require_base_model_prefix = (flax_model.base_model_prefix,) + pt_tuple_key in random_flax_state_dict
|
43 |
+
|
44 |
+
if remove_base_model_prefix and has_base_model_prefix:
|
45 |
+
pt_tuple_key = pt_tuple_key[1:]
|
46 |
+
elif add_base_model_prefix and require_base_model_prefix:
|
47 |
+
pt_tuple_key = (flax_model.base_model_prefix,) + pt_tuple_key
|
48 |
+
|
49 |
+
# Correctly rename weight parameters
|
50 |
+
if (
|
51 |
+
"norm" in pt_key
|
52 |
+
and (pt_tuple_key[-1] == "bias")
|
53 |
+
and (pt_tuple_key[:-1] + ("bias",) in random_flax_state_dict)
|
54 |
+
):
|
55 |
+
pt_tensor = pt_tensor[None, None, None, :]
|
56 |
+
elif (
|
57 |
+
"norm" in pt_key
|
58 |
+
and (pt_tuple_key[-1] == "bias")
|
59 |
+
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
|
60 |
+
):
|
61 |
+
pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
|
62 |
+
pt_tensor = pt_tensor[None, None, None, :]
|
63 |
+
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
|
64 |
+
pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
|
65 |
+
pt_tensor = pt_tensor[None, None, None, :]
|
66 |
+
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
|
67 |
+
pt_tuple_key = pt_tuple_key[:-1] + ("embedding",)
|
68 |
+
elif pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and pt_tuple_key not in random_flax_state_dict:
|
69 |
+
# conv layer
|
70 |
+
pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
|
71 |
+
pt_tensor = pt_tensor.transpose(2, 3, 1, 0)
|
72 |
+
elif pt_tuple_key[-1] == "weight" and pt_tuple_key not in random_flax_state_dict:
|
73 |
+
# linear layer
|
74 |
+
pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
|
75 |
+
pt_tensor = pt_tensor.T
|
76 |
+
elif pt_tuple_key[-1] == "gamma":
|
77 |
+
pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
|
78 |
+
elif pt_tuple_key[-1] == "beta":
|
79 |
+
pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
|
80 |
+
|
81 |
+
if pt_tuple_key in random_flax_state_dict:
|
82 |
+
if pt_tensor.shape != random_flax_state_dict[pt_tuple_key].shape:
|
83 |
+
raise ValueError(
|
84 |
+
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
|
85 |
+
f"{random_flax_state_dict[pt_tuple_key].shape}, but is {pt_tensor.shape}."
|
86 |
+
)
|
87 |
+
|
88 |
+
# also add unexpected weight so that warning is thrown
|
89 |
+
flax_state_dict[pt_tuple_key] = jnp.asarray(pt_tensor)
|
90 |
+
|
91 |
+
return unflatten_dict(flax_state_dict)
|
92 |
+
|
93 |
+
|
94 |
+
def convert_model(config_path, pt_state_dict_path, save_path):
|
95 |
+
config = VQGANConfig.from_pretrained(config_path)
|
96 |
+
model = VQModel(config)
|
97 |
+
|
98 |
+
state_dict = torch.load(pt_state_dict_path, map_location="cpu")["state_dict"]
|
99 |
+
keys = list(state_dict.keys())
|
100 |
+
for key in keys:
|
101 |
+
if key.startswith("loss"):
|
102 |
+
state_dict.pop(key)
|
103 |
+
continue
|
104 |
+
renamed_key = rename_key(key)
|
105 |
+
state_dict[renamed_key] = state_dict.pop(key)
|
106 |
+
|
107 |
+
state = convert_pytorch_state_dict_to_flax(state_dict, model)
|
108 |
+
model.params = unflatten_dict(state)
|
109 |
+
model.save_pretrained(save_path)
|
app/dalle_mini/vqgan_jax/modeling_flax_vqgan.py
ADDED
@@ -0,0 +1,609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers
|
2 |
+
|
3 |
+
from functools import partial
|
4 |
+
from typing import Tuple
|
5 |
+
import math
|
6 |
+
|
7 |
+
import jax
|
8 |
+
import jax.numpy as jnp
|
9 |
+
import numpy as np
|
10 |
+
import flax.linen as nn
|
11 |
+
from flax.core.frozen_dict import FrozenDict
|
12 |
+
|
13 |
+
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
14 |
+
|
15 |
+
from .configuration_vqgan import VQGANConfig
|
16 |
+
|
17 |
+
|
18 |
+
class Upsample(nn.Module):
|
19 |
+
in_channels: int
|
20 |
+
with_conv: bool
|
21 |
+
dtype: jnp.dtype = jnp.float32
|
22 |
+
|
23 |
+
def setup(self):
|
24 |
+
if self.with_conv:
|
25 |
+
self.conv = nn.Conv(
|
26 |
+
self.in_channels,
|
27 |
+
kernel_size=(3, 3),
|
28 |
+
strides=(1, 1),
|
29 |
+
padding=((1, 1), (1, 1)),
|
30 |
+
dtype=self.dtype,
|
31 |
+
)
|
32 |
+
|
33 |
+
def __call__(self, hidden_states):
|
34 |
+
batch, height, width, channels = hidden_states.shape
|
35 |
+
hidden_states = jax.image.resize(
|
36 |
+
hidden_states,
|
37 |
+
shape=(batch, height * 2, width * 2, channels),
|
38 |
+
method="nearest",
|
39 |
+
)
|
40 |
+
if self.with_conv:
|
41 |
+
hidden_states = self.conv(hidden_states)
|
42 |
+
return hidden_states
|
43 |
+
|
44 |
+
|
45 |
+
class Downsample(nn.Module):
|
46 |
+
in_channels: int
|
47 |
+
with_conv: bool
|
48 |
+
dtype: jnp.dtype = jnp.float32
|
49 |
+
|
50 |
+
def setup(self):
|
51 |
+
if self.with_conv:
|
52 |
+
self.conv = nn.Conv(
|
53 |
+
self.in_channels,
|
54 |
+
kernel_size=(3, 3),
|
55 |
+
strides=(2, 2),
|
56 |
+
padding="VALID",
|
57 |
+
dtype=self.dtype,
|
58 |
+
)
|
59 |
+
|
60 |
+
def __call__(self, hidden_states):
|
61 |
+
if self.with_conv:
|
62 |
+
pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
|
63 |
+
hidden_states = jnp.pad(hidden_states, pad_width=pad)
|
64 |
+
hidden_states = self.conv(hidden_states)
|
65 |
+
else:
|
66 |
+
hidden_states = nn.avg_pool(hidden_states, window_shape=(2, 2), strides=(2, 2), padding="VALID")
|
67 |
+
return hidden_states
|
68 |
+
|
69 |
+
|
70 |
+
class ResnetBlock(nn.Module):
|
71 |
+
in_channels: int
|
72 |
+
out_channels: int = None
|
73 |
+
use_conv_shortcut: bool = False
|
74 |
+
temb_channels: int = 512
|
75 |
+
dropout_prob: float = 0.0
|
76 |
+
dtype: jnp.dtype = jnp.float32
|
77 |
+
|
78 |
+
def setup(self):
|
79 |
+
self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels
|
80 |
+
|
81 |
+
self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
82 |
+
self.conv1 = nn.Conv(
|
83 |
+
self.out_channels_,
|
84 |
+
kernel_size=(3, 3),
|
85 |
+
strides=(1, 1),
|
86 |
+
padding=((1, 1), (1, 1)),
|
87 |
+
dtype=self.dtype,
|
88 |
+
)
|
89 |
+
|
90 |
+
if self.temb_channels:
|
91 |
+
self.temb_proj = nn.Dense(self.out_channels_, dtype=self.dtype)
|
92 |
+
|
93 |
+
self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
94 |
+
self.dropout = nn.Dropout(self.dropout_prob)
|
95 |
+
self.conv2 = nn.Conv(
|
96 |
+
self.out_channels_,
|
97 |
+
kernel_size=(3, 3),
|
98 |
+
strides=(1, 1),
|
99 |
+
padding=((1, 1), (1, 1)),
|
100 |
+
dtype=self.dtype,
|
101 |
+
)
|
102 |
+
|
103 |
+
if self.in_channels != self.out_channels_:
|
104 |
+
if self.use_conv_shortcut:
|
105 |
+
self.conv_shortcut = nn.Conv(
|
106 |
+
self.out_channels_,
|
107 |
+
kernel_size=(3, 3),
|
108 |
+
strides=(1, 1),
|
109 |
+
padding=((1, 1), (1, 1)),
|
110 |
+
dtype=self.dtype,
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
self.nin_shortcut = nn.Conv(
|
114 |
+
self.out_channels_,
|
115 |
+
kernel_size=(1, 1),
|
116 |
+
strides=(1, 1),
|
117 |
+
padding="VALID",
|
118 |
+
dtype=self.dtype,
|
119 |
+
)
|
120 |
+
|
121 |
+
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
122 |
+
residual = hidden_states
|
123 |
+
hidden_states = self.norm1(hidden_states)
|
124 |
+
hidden_states = nn.swish(hidden_states)
|
125 |
+
hidden_states = self.conv1(hidden_states)
|
126 |
+
|
127 |
+
if temb is not None:
|
128 |
+
hidden_states = hidden_states + self.temb_proj(nn.swish(temb))[:, :, None, None] # TODO: check shapes
|
129 |
+
|
130 |
+
hidden_states = self.norm2(hidden_states)
|
131 |
+
hidden_states = nn.swish(hidden_states)
|
132 |
+
hidden_states = self.dropout(hidden_states, deterministic)
|
133 |
+
hidden_states = self.conv2(hidden_states)
|
134 |
+
|
135 |
+
if self.in_channels != self.out_channels_:
|
136 |
+
if self.use_conv_shortcut:
|
137 |
+
residual = self.conv_shortcut(residual)
|
138 |
+
else:
|
139 |
+
residual = self.nin_shortcut(residual)
|
140 |
+
|
141 |
+
return hidden_states + residual
|
142 |
+
|
143 |
+
|
144 |
+
class AttnBlock(nn.Module):
|
145 |
+
in_channels: int
|
146 |
+
dtype: jnp.dtype = jnp.float32
|
147 |
+
|
148 |
+
def setup(self):
|
149 |
+
conv = partial(
|
150 |
+
nn.Conv, self.in_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype
|
151 |
+
)
|
152 |
+
|
153 |
+
self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
154 |
+
self.q, self.k, self.v = conv(), conv(), conv()
|
155 |
+
self.proj_out = conv()
|
156 |
+
|
157 |
+
def __call__(self, hidden_states):
|
158 |
+
residual = hidden_states
|
159 |
+
hidden_states = self.norm(hidden_states)
|
160 |
+
|
161 |
+
query = self.q(hidden_states)
|
162 |
+
key = self.k(hidden_states)
|
163 |
+
value = self.v(hidden_states)
|
164 |
+
|
165 |
+
# compute attentions
|
166 |
+
batch, height, width, channels = query.shape
|
167 |
+
query = query.reshape((batch, height * width, channels))
|
168 |
+
key = key.reshape((batch, height * width, channels))
|
169 |
+
attn_weights = jnp.einsum("...qc,...kc->...qk", query, key)
|
170 |
+
attn_weights = attn_weights * (int(channels) ** -0.5)
|
171 |
+
attn_weights = nn.softmax(attn_weights, axis=2)
|
172 |
+
|
173 |
+
## attend to values
|
174 |
+
value = value.reshape((batch, height * width, channels))
|
175 |
+
hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)
|
176 |
+
hidden_states = hidden_states.reshape((batch, height, width, channels))
|
177 |
+
|
178 |
+
hidden_states = self.proj_out(hidden_states)
|
179 |
+
hidden_states = hidden_states + residual
|
180 |
+
return hidden_states
|
181 |
+
|
182 |
+
|
183 |
+
class UpsamplingBlock(nn.Module):
|
184 |
+
config: VQGANConfig
|
185 |
+
curr_res: int
|
186 |
+
block_idx: int
|
187 |
+
dtype: jnp.dtype = jnp.float32
|
188 |
+
|
189 |
+
def setup(self):
|
190 |
+
if self.block_idx == self.config.num_resolutions - 1:
|
191 |
+
block_in = self.config.ch * self.config.ch_mult[-1]
|
192 |
+
else:
|
193 |
+
block_in = self.config.ch * self.config.ch_mult[self.block_idx + 1]
|
194 |
+
|
195 |
+
block_out = self.config.ch * self.config.ch_mult[self.block_idx]
|
196 |
+
self.temb_ch = 0
|
197 |
+
|
198 |
+
res_blocks = []
|
199 |
+
attn_blocks = []
|
200 |
+
for _ in range(self.config.num_res_blocks + 1):
|
201 |
+
res_blocks.append(
|
202 |
+
ResnetBlock(
|
203 |
+
block_in, block_out, temb_channels=self.temb_ch, dropout_prob=self.config.dropout, dtype=self.dtype
|
204 |
+
)
|
205 |
+
)
|
206 |
+
block_in = block_out
|
207 |
+
if self.curr_res in self.config.attn_resolutions:
|
208 |
+
attn_blocks.append(AttnBlock(block_in, dtype=self.dtype))
|
209 |
+
|
210 |
+
self.block = res_blocks
|
211 |
+
self.attn = attn_blocks
|
212 |
+
|
213 |
+
self.upsample = None
|
214 |
+
if self.block_idx != 0:
|
215 |
+
self.upsample = Upsample(block_in, self.config.resamp_with_conv, dtype=self.dtype)
|
216 |
+
|
217 |
+
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
218 |
+
for res_block in self.block:
|
219 |
+
hidden_states = res_block(hidden_states, temb, deterministic=deterministic)
|
220 |
+
for attn_block in self.attn:
|
221 |
+
hidden_states = attn_block(hidden_states)
|
222 |
+
|
223 |
+
if self.upsample is not None:
|
224 |
+
hidden_states = self.upsample(hidden_states)
|
225 |
+
|
226 |
+
return hidden_states
|
227 |
+
|
228 |
+
|
229 |
+
class DownsamplingBlock(nn.Module):
|
230 |
+
config: VQGANConfig
|
231 |
+
curr_res: int
|
232 |
+
block_idx: int
|
233 |
+
dtype: jnp.dtype = jnp.float32
|
234 |
+
|
235 |
+
def setup(self):
|
236 |
+
in_ch_mult = (1,) + tuple(self.config.ch_mult)
|
237 |
+
block_in = self.config.ch * in_ch_mult[self.block_idx]
|
238 |
+
block_out = self.config.ch * self.config.ch_mult[self.block_idx]
|
239 |
+
self.temb_ch = 0
|
240 |
+
|
241 |
+
res_blocks = []
|
242 |
+
attn_blocks = []
|
243 |
+
for _ in range(self.config.num_res_blocks):
|
244 |
+
res_blocks.append(
|
245 |
+
ResnetBlock(
|
246 |
+
block_in, block_out, temb_channels=self.temb_ch, dropout_prob=self.config.dropout, dtype=self.dtype
|
247 |
+
)
|
248 |
+
)
|
249 |
+
block_in = block_out
|
250 |
+
if self.curr_res in self.config.attn_resolutions:
|
251 |
+
attn_blocks.append(AttnBlock(block_in, dtype=self.dtype))
|
252 |
+
|
253 |
+
self.block = res_blocks
|
254 |
+
self.attn = attn_blocks
|
255 |
+
|
256 |
+
self.downsample = None
|
257 |
+
if self.block_idx != self.config.num_resolutions - 1:
|
258 |
+
self.downsample = Downsample(block_in, self.config.resamp_with_conv, dtype=self.dtype)
|
259 |
+
|
260 |
+
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
261 |
+
for res_block in self.block:
|
262 |
+
hidden_states = res_block(hidden_states, temb, deterministic=deterministic)
|
263 |
+
for attn_block in self.attn:
|
264 |
+
hidden_states = attn_block(hidden_states)
|
265 |
+
|
266 |
+
if self.downsample is not None:
|
267 |
+
hidden_states = self.downsample(hidden_states)
|
268 |
+
|
269 |
+
return hidden_states
|
270 |
+
|
271 |
+
|
272 |
+
class MidBlock(nn.Module):
|
273 |
+
in_channels: int
|
274 |
+
temb_channels: int
|
275 |
+
dropout: float
|
276 |
+
dtype: jnp.dtype = jnp.float32
|
277 |
+
|
278 |
+
def setup(self):
|
279 |
+
self.block_1 = ResnetBlock(
|
280 |
+
self.in_channels,
|
281 |
+
self.in_channels,
|
282 |
+
temb_channels=self.temb_channels,
|
283 |
+
dropout_prob=self.dropout,
|
284 |
+
dtype=self.dtype,
|
285 |
+
)
|
286 |
+
self.attn_1 = AttnBlock(self.in_channels, dtype=self.dtype)
|
287 |
+
self.block_2 = ResnetBlock(
|
288 |
+
self.in_channels,
|
289 |
+
self.in_channels,
|
290 |
+
temb_channels=self.temb_channels,
|
291 |
+
dropout_prob=self.dropout,
|
292 |
+
dtype=self.dtype,
|
293 |
+
)
|
294 |
+
|
295 |
+
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
296 |
+
hidden_states = self.block_1(hidden_states, temb, deterministic=deterministic)
|
297 |
+
hidden_states = self.attn_1(hidden_states)
|
298 |
+
hidden_states = self.block_2(hidden_states, temb, deterministic=deterministic)
|
299 |
+
return hidden_states
|
300 |
+
|
301 |
+
|
302 |
+
class Encoder(nn.Module):
|
303 |
+
config: VQGANConfig
|
304 |
+
dtype: jnp.dtype = jnp.float32
|
305 |
+
|
306 |
+
def setup(self):
|
307 |
+
self.temb_ch = 0
|
308 |
+
|
309 |
+
# downsampling
|
310 |
+
self.conv_in = nn.Conv(
|
311 |
+
self.config.ch,
|
312 |
+
kernel_size=(3, 3),
|
313 |
+
strides=(1, 1),
|
314 |
+
padding=((1, 1), (1, 1)),
|
315 |
+
dtype=self.dtype,
|
316 |
+
)
|
317 |
+
|
318 |
+
curr_res = self.config.resolution
|
319 |
+
downsample_blocks = []
|
320 |
+
for i_level in range(self.config.num_resolutions):
|
321 |
+
downsample_blocks.append(DownsamplingBlock(self.config, curr_res, block_idx=i_level, dtype=self.dtype))
|
322 |
+
|
323 |
+
if i_level != self.config.num_resolutions - 1:
|
324 |
+
curr_res = curr_res // 2
|
325 |
+
self.down = downsample_blocks
|
326 |
+
|
327 |
+
# middle
|
328 |
+
mid_channels = self.config.ch * self.config.ch_mult[-1]
|
329 |
+
self.mid = MidBlock(mid_channels, self.temb_ch, self.config.dropout, dtype=self.dtype)
|
330 |
+
|
331 |
+
# end
|
332 |
+
self.norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
333 |
+
self.conv_out = nn.Conv(
|
334 |
+
2 * self.config.z_channels if self.config.double_z else self.config.z_channels,
|
335 |
+
kernel_size=(3, 3),
|
336 |
+
strides=(1, 1),
|
337 |
+
padding=((1, 1), (1, 1)),
|
338 |
+
dtype=self.dtype,
|
339 |
+
)
|
340 |
+
|
341 |
+
def __call__(self, pixel_values, deterministic: bool = True):
|
342 |
+
# timestep embedding
|
343 |
+
temb = None
|
344 |
+
|
345 |
+
# downsampling
|
346 |
+
hidden_states = self.conv_in(pixel_values)
|
347 |
+
for block in self.down:
|
348 |
+
hidden_states = block(hidden_states, temb, deterministic=deterministic)
|
349 |
+
|
350 |
+
# middle
|
351 |
+
hidden_states = self.mid(hidden_states, temb, deterministic=deterministic)
|
352 |
+
|
353 |
+
# end
|
354 |
+
hidden_states = self.norm_out(hidden_states)
|
355 |
+
hidden_states = nn.swish(hidden_states)
|
356 |
+
hidden_states = self.conv_out(hidden_states)
|
357 |
+
|
358 |
+
return hidden_states
|
359 |
+
|
360 |
+
|
361 |
+
class Decoder(nn.Module):
|
362 |
+
config: VQGANConfig
|
363 |
+
dtype: jnp.dtype = jnp.float32
|
364 |
+
|
365 |
+
def setup(self):
|
366 |
+
self.temb_ch = 0
|
367 |
+
|
368 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
369 |
+
block_in = self.config.ch * self.config.ch_mult[self.config.num_resolutions - 1]
|
370 |
+
curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1)
|
371 |
+
self.z_shape = (1, self.config.z_channels, curr_res, curr_res)
|
372 |
+
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
373 |
+
|
374 |
+
# z to block_in
|
375 |
+
self.conv_in = nn.Conv(
|
376 |
+
block_in,
|
377 |
+
kernel_size=(3, 3),
|
378 |
+
strides=(1, 1),
|
379 |
+
padding=((1, 1), (1, 1)),
|
380 |
+
dtype=self.dtype,
|
381 |
+
)
|
382 |
+
|
383 |
+
# middle
|
384 |
+
self.mid = MidBlock(block_in, self.temb_ch, self.config.dropout, dtype=self.dtype)
|
385 |
+
|
386 |
+
# upsampling
|
387 |
+
upsample_blocks = []
|
388 |
+
for i_level in reversed(range(self.config.num_resolutions)):
|
389 |
+
upsample_blocks.append(UpsamplingBlock(self.config, curr_res, block_idx=i_level, dtype=self.dtype))
|
390 |
+
if i_level != 0:
|
391 |
+
curr_res = curr_res * 2
|
392 |
+
self.up = list(reversed(upsample_blocks)) # reverse to get consistent order
|
393 |
+
|
394 |
+
# end
|
395 |
+
self.norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
396 |
+
self.conv_out = nn.Conv(
|
397 |
+
self.config.out_ch,
|
398 |
+
kernel_size=(3, 3),
|
399 |
+
strides=(1, 1),
|
400 |
+
padding=((1, 1), (1, 1)),
|
401 |
+
dtype=self.dtype,
|
402 |
+
)
|
403 |
+
|
404 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
405 |
+
# timestep embedding
|
406 |
+
temb = None
|
407 |
+
|
408 |
+
# z to block_in
|
409 |
+
hidden_states = self.conv_in(hidden_states)
|
410 |
+
|
411 |
+
# middle
|
412 |
+
hidden_states = self.mid(hidden_states, temb, deterministic=deterministic)
|
413 |
+
|
414 |
+
# upsampling
|
415 |
+
for block in reversed(self.up):
|
416 |
+
hidden_states = block(hidden_states, temb, deterministic=deterministic)
|
417 |
+
|
418 |
+
# end
|
419 |
+
if self.config.give_pre_end:
|
420 |
+
return hidden_states
|
421 |
+
|
422 |
+
hidden_states = self.norm_out(hidden_states)
|
423 |
+
hidden_states = nn.swish(hidden_states)
|
424 |
+
hidden_states = self.conv_out(hidden_states)
|
425 |
+
|
426 |
+
return hidden_states
|
427 |
+
|
428 |
+
|
429 |
+
class VectorQuantizer(nn.Module):
|
430 |
+
"""
|
431 |
+
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
432 |
+
____________________________________________
|
433 |
+
Discretization bottleneck part of the VQ-VAE.
|
434 |
+
Inputs:
|
435 |
+
- n_e : number of embeddings
|
436 |
+
- e_dim : dimension of embedding
|
437 |
+
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
438 |
+
_____________________________________________
|
439 |
+
"""
|
440 |
+
|
441 |
+
config: VQGANConfig
|
442 |
+
dtype: jnp.dtype = jnp.float32
|
443 |
+
|
444 |
+
def setup(self):
|
445 |
+
self.embedding = nn.Embed(self.config.n_embed, self.config.embed_dim, dtype=self.dtype) # TODO: init
|
446 |
+
|
447 |
+
def __call__(self, hidden_states):
|
448 |
+
"""
|
449 |
+
Inputs the output of the encoder network z and maps it to a discrete
|
450 |
+
one-hot vector that is the index of the closest embedding vector e_j
|
451 |
+
z (continuous) -> z_q (discrete)
|
452 |
+
z.shape = (batch, channel, height, width)
|
453 |
+
quantization pipeline:
|
454 |
+
1. get encoder input (B,C,H,W)
|
455 |
+
2. flatten input to (B*H*W,C)
|
456 |
+
"""
|
457 |
+
# flatten
|
458 |
+
hidden_states_flattended = hidden_states.reshape((-1, self.config.embed_dim))
|
459 |
+
|
460 |
+
# dummy op to init the weights, so we can access them below
|
461 |
+
self.embedding(jnp.ones((1, 1), dtype="i4"))
|
462 |
+
|
463 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
464 |
+
emb_weights = self.variables["params"]["embedding"]["embedding"]
|
465 |
+
distance = (
|
466 |
+
jnp.sum(hidden_states_flattended ** 2, axis=1, keepdims=True)
|
467 |
+
+ jnp.sum(emb_weights ** 2, axis=1)
|
468 |
+
- 2 * jnp.dot(hidden_states_flattended, emb_weights.T)
|
469 |
+
)
|
470 |
+
|
471 |
+
# get quantized latent vectors
|
472 |
+
min_encoding_indices = jnp.argmin(distance, axis=1)
|
473 |
+
z_q = self.embedding(min_encoding_indices).reshape(hidden_states.shape)
|
474 |
+
|
475 |
+
# reshape to (batch, num_tokens)
|
476 |
+
min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1)
|
477 |
+
|
478 |
+
# compute the codebook_loss (q_loss) outside the model
|
479 |
+
# here we return the embeddings and indices
|
480 |
+
return z_q, min_encoding_indices
|
481 |
+
|
482 |
+
def get_codebook_entry(self, indices, shape=None):
|
483 |
+
# indices are expected to be of shape (batch, num_tokens)
|
484 |
+
# get quantized latent vectors
|
485 |
+
batch, num_tokens = indices.shape
|
486 |
+
z_q = self.embedding(indices)
|
487 |
+
z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1)
|
488 |
+
return z_q
|
489 |
+
|
490 |
+
|
491 |
+
class VQModule(nn.Module):
|
492 |
+
config: VQGANConfig
|
493 |
+
dtype: jnp.dtype = jnp.float32
|
494 |
+
|
495 |
+
def setup(self):
|
496 |
+
self.encoder = Encoder(self.config, dtype=self.dtype)
|
497 |
+
self.decoder = Decoder(self.config, dtype=self.dtype)
|
498 |
+
self.quantize = VectorQuantizer(self.config, dtype=self.dtype)
|
499 |
+
self.quant_conv = nn.Conv(
|
500 |
+
self.config.embed_dim,
|
501 |
+
kernel_size=(1, 1),
|
502 |
+
strides=(1, 1),
|
503 |
+
padding="VALID",
|
504 |
+
dtype=self.dtype,
|
505 |
+
)
|
506 |
+
self.post_quant_conv = nn.Conv(
|
507 |
+
self.config.z_channels,
|
508 |
+
kernel_size=(1, 1),
|
509 |
+
strides=(1, 1),
|
510 |
+
padding="VALID",
|
511 |
+
dtype=self.dtype,
|
512 |
+
)
|
513 |
+
|
514 |
+
def encode(self, pixel_values, deterministic: bool = True):
|
515 |
+
hidden_states = self.encoder(pixel_values, deterministic=deterministic)
|
516 |
+
hidden_states = self.quant_conv(hidden_states)
|
517 |
+
quant_states, indices = self.quantize(hidden_states)
|
518 |
+
return quant_states, indices
|
519 |
+
|
520 |
+
def decode(self, hidden_states, deterministic: bool = True):
|
521 |
+
hidden_states = self.post_quant_conv(hidden_states)
|
522 |
+
hidden_states = self.decoder(hidden_states, deterministic=deterministic)
|
523 |
+
return hidden_states
|
524 |
+
|
525 |
+
def decode_code(self, code_b):
|
526 |
+
hidden_states = self.quantize.get_codebook_entry(code_b)
|
527 |
+
hidden_states = self.decode(hidden_states)
|
528 |
+
return hidden_states
|
529 |
+
|
530 |
+
def __call__(self, pixel_values, deterministic: bool = True):
|
531 |
+
quant_states, indices = self.encode(pixel_values, deterministic)
|
532 |
+
hidden_states = self.decode(quant_states, deterministic)
|
533 |
+
return hidden_states, indices
|
534 |
+
|
535 |
+
|
536 |
+
class VQGANPreTrainedModel(FlaxPreTrainedModel):
|
537 |
+
"""
|
538 |
+
An abstract class to handle weights initialization and a simple interface
|
539 |
+
for downloading and loading pretrained models.
|
540 |
+
"""
|
541 |
+
|
542 |
+
config_class = VQGANConfig
|
543 |
+
base_model_prefix = "model"
|
544 |
+
module_class: nn.Module = None
|
545 |
+
|
546 |
+
def __init__(
|
547 |
+
self,
|
548 |
+
config: VQGANConfig,
|
549 |
+
input_shape: Tuple = (1, 256, 256, 3),
|
550 |
+
seed: int = 0,
|
551 |
+
dtype: jnp.dtype = jnp.float32,
|
552 |
+
**kwargs,
|
553 |
+
):
|
554 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
555 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
|
556 |
+
|
557 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
558 |
+
# init input tensors
|
559 |
+
pixel_values = jnp.zeros(input_shape, dtype=jnp.float32)
|
560 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
561 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
562 |
+
|
563 |
+
return self.module.init(rngs, pixel_values)["params"]
|
564 |
+
|
565 |
+
def encode(self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False):
|
566 |
+
# Handle any PRNG if needed
|
567 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
568 |
+
|
569 |
+
return self.module.apply(
|
570 |
+
{"params": params or self.params}, jnp.array(pixel_values), not train, rngs=rngs, method=self.module.encode
|
571 |
+
)
|
572 |
+
|
573 |
+
def decode(self, hidden_states, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False):
|
574 |
+
# Handle any PRNG if needed
|
575 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
576 |
+
|
577 |
+
return self.module.apply(
|
578 |
+
{"params": params or self.params},
|
579 |
+
jnp.array(hidden_states),
|
580 |
+
not train,
|
581 |
+
rngs=rngs,
|
582 |
+
method=self.module.decode,
|
583 |
+
)
|
584 |
+
|
585 |
+
def decode_code(self, indices, params: dict = None):
|
586 |
+
return self.module.apply(
|
587 |
+
{"params": params or self.params}, jnp.array(indices, dtype="i4"), method=self.module.decode_code
|
588 |
+
)
|
589 |
+
|
590 |
+
def __call__(
|
591 |
+
self,
|
592 |
+
pixel_values,
|
593 |
+
params: dict = None,
|
594 |
+
dropout_rng: jax.random.PRNGKey = None,
|
595 |
+
train: bool = False,
|
596 |
+
):
|
597 |
+
# Handle any PRNG if needed
|
598 |
+
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
599 |
+
|
600 |
+
return self.module.apply(
|
601 |
+
{"params": params or self.params},
|
602 |
+
jnp.array(pixel_values),
|
603 |
+
not train,
|
604 |
+
rngs=rngs,
|
605 |
+
)
|
606 |
+
|
607 |
+
|
608 |
+
class VQModel(VQGANPreTrainedModel):
|
609 |
+
module_class = VQModule
|