Spaces:
Running
Running
feat: padding mask not required
Browse files- seq2seq/run_seq2seq_flax.py +4 -15
seq2seq/run_seq2seq_flax.py
CHANGED
@@ -487,10 +487,6 @@ def main():
|
|
487 |
|
488 |
model_inputs["decoder_input_ids"] = labels
|
489 |
|
490 |
-
# We need decoder_attention_mask so we can ignore pad tokens from loss
|
491 |
-
# TODO: I don't believe we need "decoder_attention_mask" in this case because all labels have same length
|
492 |
-
#model_inputs["decoder_attention_mask"] = labels["attention_mask"]
|
493 |
-
|
494 |
return model_inputs
|
495 |
|
496 |
if training_args.do_train:
|
@@ -643,7 +639,7 @@ def main():
|
|
643 |
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)
|
644 |
|
645 |
# label smoothed cross entropy
|
646 |
-
def loss_fn(logits, labels,
|
647 |
"""
|
648 |
The label smoothing implementation is adapted from Flax's official example:
|
649 |
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
|
@@ -659,12 +655,7 @@ def main():
|
|
659 |
loss = optax.softmax_cross_entropy(logits, soft_labels)
|
660 |
loss = loss - normalizing_constant
|
661 |
|
662 |
-
|
663 |
-
padding_mask = np.ones(loss.shape)
|
664 |
-
|
665 |
-
# ignore padded tokens from loss
|
666 |
-
loss = loss * padding_mask
|
667 |
-
loss = loss.sum() / padding_mask.sum()
|
668 |
return loss
|
669 |
|
670 |
# Define gradient update step fn
|
@@ -674,8 +665,7 @@ def main():
|
|
674 |
def compute_loss(params):
|
675 |
labels = batch.pop("labels")
|
676 |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
677 |
-
|
678 |
-
loss = loss_fn(logits, labels, padding_mask, label_smoothing_factor)
|
679 |
return loss
|
680 |
|
681 |
grad_fn = jax.value_and_grad(compute_loss)
|
@@ -693,8 +683,7 @@ def main():
|
|
693 |
def eval_step(params, batch, label_smoothing_factor=0.0):
|
694 |
labels = batch.pop("labels")
|
695 |
logits = model(**batch, params=params, train=False)[0]
|
696 |
-
|
697 |
-
loss = loss_fn(logits, labels, padding_mask, label_smoothing_factor)
|
698 |
|
699 |
# summarize metrics
|
700 |
metrics = {"loss": loss}
|
|
|
487 |
|
488 |
model_inputs["decoder_input_ids"] = labels
|
489 |
|
|
|
|
|
|
|
|
|
490 |
return model_inputs
|
491 |
|
492 |
if training_args.do_train:
|
|
|
639 |
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng)
|
640 |
|
641 |
# label smoothed cross entropy
|
642 |
+
def loss_fn(logits, labels, label_smoothing_factor=0.0):
|
643 |
"""
|
644 |
The label smoothing implementation is adapted from Flax's official example:
|
645 |
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
|
|
|
655 |
loss = optax.softmax_cross_entropy(logits, soft_labels)
|
656 |
loss = loss - normalizing_constant
|
657 |
|
658 |
+
loss = loss.mean()
|
|
|
|
|
|
|
|
|
|
|
659 |
return loss
|
660 |
|
661 |
# Define gradient update step fn
|
|
|
665 |
def compute_loss(params):
|
666 |
labels = batch.pop("labels")
|
667 |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
668 |
+
loss = loss_fn(logits, labels, label_smoothing_factor)
|
|
|
669 |
return loss
|
670 |
|
671 |
grad_fn = jax.value_and_grad(compute_loss)
|
|
|
683 |
def eval_step(params, batch, label_smoothing_factor=0.0):
|
684 |
labels = batch.pop("labels")
|
685 |
logits = model(**batch, params=params, train=False)[0]
|
686 |
+
loss = loss_fn(logits, labels, label_smoothing_factor)
|
|
|
687 |
|
688 |
# summarize metrics
|
689 |
metrics = {"loss": loss}
|