Spaces:
Running
Running
Merge branch 'main' into abidlabs/main
Browse files- .github/workflows/check_size.yml +1 -1
- .gitignore +2 -0
- LICENSE +201 -0
- README.md +10 -20
- app/app.py +1 -1
- app/gradio/app_gradio.py +1 -1
- dalle_mini/vqgan_jax/README.md +0 -5
- dalle_mini/vqgan_jax/__init__.py +0 -0
- dalle_mini/vqgan_jax/configuration_vqgan.py +0 -40
- dalle_mini/vqgan_jax/modeling_flax_vqgan.py +0 -609
- dev/{notebooks/encoding → encoding}/vqgan-jax-encoding-with-captions.ipynb +1 -9
- dev/{notebooks/encoding → encoding}/vqgan-jax-encoding-yfcc100m.ipynb +9 -16
- dev/{notebooks/encoding → encoding}/vqgan-jax-encoding.ipynb +0 -0
- dev/{seq2seq/environment.yaml → environment.yaml} +0 -0
- dev/{predictions → inference}/README.md +0 -0
- dev/{predictions → inference}/dalle_mini +0 -0
- dev/inference/inference_pipeline.ipynb +0 -0
- dev/inference/wandb-examples-from-backend.py +76 -0
- dev/{predictions → inference}/wandb-examples.py +16 -57
- dev/notebooks/README.md +0 -5
- dev/notebooks/demo/CustomBARTv4b_model-generate.ipynb +0 -394
- dev/notebooks/demo/demo_notebook.ipynb +0 -387
- dev/notebooks/demo/model-sweep.py +0 -220
- dev/notebooks/demo/tpu-demo.ipynb +0 -455
- dev/notebooks/model/data-pipeline.ipynb +0 -385
- dev/predictions/wandb-examples-from-backend.py +0 -52
- dev/{seq2seq/requirements.txt → requirements.txt} +1 -0
- dev/vqgan/JAX_VQGAN_f16_16384_Reconstruction.ipynb +0 -0
.github/workflows/check_size.yml
CHANGED
@@ -14,4 +14,4 @@ jobs:
|
|
14 |
- name: Check large files
|
15 |
uses: ActionsDesk/lfs-warning@v2.0
|
16 |
with:
|
17 |
-
filesizelimit:
|
|
|
14 |
- name: Check large files
|
15 |
uses: ActionsDesk/lfs-warning@v2.0
|
16 |
with:
|
17 |
+
filesizelimit: 9000000 # so we can sync to HF spaces
|
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
__pycache__
|
|
|
|
|
|
1 |
__pycache__
|
2 |
+
.ipynb_checkpoints
|
3 |
+
.streamlit
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2021 The DALL·E mini Authors
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -22,29 +22,13 @@ You can create your own pictures with [the demo](https://huggingface.co/spaces/f
|
|
22 |
|
23 |
Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).
|
24 |
|
25 |
-
## Where does the logo come from?
|
26 |
-
|
27 |
-
The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
|
28 |
-
|
29 |
## Development
|
30 |
|
31 |
-
This section is for the adventurous people wanting to look into the code.
|
32 |
-
|
33 |
### Dependencies Installation
|
34 |
|
35 |
The root folder and associated `requirements.txt` is only for the app.
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
You should create a new python virtual environment and install the project dependencies inside the virtual env. You need to use the `-f` (`--find-links`) option for `pip` to be able to find the appropriate `libtpu` required for the TPU hardware.
|
40 |
-
|
41 |
-
Adapt the installation to your own hardware and follow library installation instructions.
|
42 |
-
|
43 |
-
```
|
44 |
-
$ pip install -r requirements.txt -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
|
45 |
-
```
|
46 |
-
|
47 |
-
If you use `conda`, you can create the virtual env and install everything using: `conda env update -f environments.yaml`
|
48 |
|
49 |
### Training of VQGAN
|
50 |
|
@@ -58,13 +42,19 @@ Use [patil-suraj/vqgan-jax](https://github.com/patil-suraj/vqgan-jax).
|
|
58 |
|
59 |
### Training of Seq2Seq
|
60 |
|
61 |
-
Refer to `dev/seq2seq` folder.
|
62 |
|
63 |
You can also adjust the [sweep configuration file](https://docs.wandb.ai/guides/sweeps) if you need to perform a hyperparameter search.
|
64 |
|
65 |
-
### Inference
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
68 |
|
69 |
## Authors
|
70 |
|
|
|
22 |
|
23 |
Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).
|
24 |
|
|
|
|
|
|
|
|
|
25 |
## Development
|
26 |
|
|
|
|
|
27 |
### Dependencies Installation
|
28 |
|
29 |
The root folder and associated `requirements.txt` is only for the app.
|
30 |
|
31 |
+
For development, use [`dev/requirements.txt`](dev/requirements.txt) or [`dev/environment.yaml`](dev/environment.yaml).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
### Training of VQGAN
|
34 |
|
|
|
42 |
|
43 |
### Training of Seq2Seq
|
44 |
|
45 |
+
Refer to [`dev/seq2seq`](dev/seq2seq) folder.
|
46 |
|
47 |
You can also adjust the [sweep configuration file](https://docs.wandb.ai/guides/sweeps) if you need to perform a hyperparameter search.
|
48 |
|
49 |
+
### Inference Pipeline
|
50 |
+
|
51 |
+
To generate sample predictions and understand the inference pipeline step by step, refer to [`dev/inference/inference_pipeline.ipynb`](dev/inference/inference_pipeline.ipynb).
|
52 |
+
|
53 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb)
|
54 |
|
55 |
+
## Where does the logo come from?
|
56 |
+
|
57 |
+
The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
|
58 |
|
59 |
## Authors
|
60 |
|
app/app.py
CHANGED
@@ -46,7 +46,7 @@ DALL·E mini is an AI model that generates images from any prompt you give!
|
|
46 |
<p style='text-align: center'>
|
47 |
Created by Boris Dayma et al. 2021
|
48 |
<br/>
|
49 |
-
<a href="https://github.com/borisdayma/dalle-mini">GitHub</a> | <a href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA">Project Report</a>
|
50 |
</p>
|
51 |
""", unsafe_allow_html=True)
|
52 |
|
|
|
46 |
<p style='text-align: center'>
|
47 |
Created by Boris Dayma et al. 2021
|
48 |
<br/>
|
49 |
+
<a href="https://github.com/borisdayma/dalle-mini" target="_blank">GitHub</a> | <a href="https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA" target="_blank">Project Report</a>
|
50 |
</p>
|
51 |
""", unsafe_allow_html=True)
|
52 |
|
app/gradio/app_gradio.py
CHANGED
@@ -19,7 +19,7 @@ import numpy as np
|
|
19 |
import matplotlib.pyplot as plt
|
20 |
|
21 |
|
22 |
-
from
|
23 |
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
24 |
|
25 |
import gradio as gr
|
|
|
19 |
import matplotlib.pyplot as plt
|
20 |
|
21 |
|
22 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
23 |
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
24 |
|
25 |
import gradio as gr
|
dalle_mini/vqgan_jax/README.md
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
## vqgan-jax
|
2 |
-
|
3 |
-
Files copied from [patil-suraj/vqgan-jax](https://github.com/patil-suraj/vqgan-jax/tree/main/vqgan_jax)
|
4 |
-
|
5 |
-
Required for VQGAN Jax model.
|
|
|
|
|
|
|
|
|
|
|
|
dalle_mini/vqgan_jax/__init__.py
DELETED
File without changes
|
dalle_mini/vqgan_jax/configuration_vqgan.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
from typing import Tuple
|
2 |
-
|
3 |
-
from transformers import PretrainedConfig
|
4 |
-
|
5 |
-
|
6 |
-
class VQGANConfig(PretrainedConfig):
|
7 |
-
def __init__(
|
8 |
-
self,
|
9 |
-
ch: int = 128,
|
10 |
-
out_ch: int = 3,
|
11 |
-
in_channels: int = 3,
|
12 |
-
num_res_blocks: int = 2,
|
13 |
-
resolution: int = 256,
|
14 |
-
z_channels: int = 256,
|
15 |
-
ch_mult: Tuple = (1, 1, 2, 2, 4),
|
16 |
-
attn_resolutions: int = (16,),
|
17 |
-
n_embed: int = 1024,
|
18 |
-
embed_dim: int = 256,
|
19 |
-
dropout: float = 0.0,
|
20 |
-
double_z: bool = False,
|
21 |
-
resamp_with_conv: bool = True,
|
22 |
-
give_pre_end: bool = False,
|
23 |
-
**kwargs,
|
24 |
-
):
|
25 |
-
super().__init__(**kwargs)
|
26 |
-
self.ch = ch
|
27 |
-
self.out_ch = out_ch
|
28 |
-
self.in_channels = in_channels
|
29 |
-
self.num_res_blocks = num_res_blocks
|
30 |
-
self.resolution = resolution
|
31 |
-
self.z_channels = z_channels
|
32 |
-
self.ch_mult = list(ch_mult)
|
33 |
-
self.attn_resolutions = list(attn_resolutions)
|
34 |
-
self.n_embed = n_embed
|
35 |
-
self.embed_dim = embed_dim
|
36 |
-
self.dropout = dropout
|
37 |
-
self.double_z = double_z
|
38 |
-
self.resamp_with_conv = resamp_with_conv
|
39 |
-
self.give_pre_end = give_pre_end
|
40 |
-
self.num_resolutions = len(ch_mult)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dalle_mini/vqgan_jax/modeling_flax_vqgan.py
DELETED
@@ -1,609 +0,0 @@
|
|
1 |
-
# JAX implementation of VQGAN from taming-transformers https://github.com/CompVis/taming-transformers
|
2 |
-
|
3 |
-
from functools import partial
|
4 |
-
from typing import Tuple
|
5 |
-
import math
|
6 |
-
|
7 |
-
import jax
|
8 |
-
import jax.numpy as jnp
|
9 |
-
import numpy as np
|
10 |
-
import flax.linen as nn
|
11 |
-
from flax.core.frozen_dict import FrozenDict
|
12 |
-
|
13 |
-
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
14 |
-
|
15 |
-
from .configuration_vqgan import VQGANConfig
|
16 |
-
|
17 |
-
|
18 |
-
class Upsample(nn.Module):
|
19 |
-
in_channels: int
|
20 |
-
with_conv: bool
|
21 |
-
dtype: jnp.dtype = jnp.float32
|
22 |
-
|
23 |
-
def setup(self):
|
24 |
-
if self.with_conv:
|
25 |
-
self.conv = nn.Conv(
|
26 |
-
self.in_channels,
|
27 |
-
kernel_size=(3, 3),
|
28 |
-
strides=(1, 1),
|
29 |
-
padding=((1, 1), (1, 1)),
|
30 |
-
dtype=self.dtype,
|
31 |
-
)
|
32 |
-
|
33 |
-
def __call__(self, hidden_states):
|
34 |
-
batch, height, width, channels = hidden_states.shape
|
35 |
-
hidden_states = jax.image.resize(
|
36 |
-
hidden_states,
|
37 |
-
shape=(batch, height * 2, width * 2, channels),
|
38 |
-
method="nearest",
|
39 |
-
)
|
40 |
-
if self.with_conv:
|
41 |
-
hidden_states = self.conv(hidden_states)
|
42 |
-
return hidden_states
|
43 |
-
|
44 |
-
|
45 |
-
class Downsample(nn.Module):
|
46 |
-
in_channels: int
|
47 |
-
with_conv: bool
|
48 |
-
dtype: jnp.dtype = jnp.float32
|
49 |
-
|
50 |
-
def setup(self):
|
51 |
-
if self.with_conv:
|
52 |
-
self.conv = nn.Conv(
|
53 |
-
self.in_channels,
|
54 |
-
kernel_size=(3, 3),
|
55 |
-
strides=(2, 2),
|
56 |
-
padding="VALID",
|
57 |
-
dtype=self.dtype,
|
58 |
-
)
|
59 |
-
|
60 |
-
def __call__(self, hidden_states):
|
61 |
-
if self.with_conv:
|
62 |
-
pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
|
63 |
-
hidden_states = jnp.pad(hidden_states, pad_width=pad)
|
64 |
-
hidden_states = self.conv(hidden_states)
|
65 |
-
else:
|
66 |
-
hidden_states = nn.avg_pool(hidden_states, window_shape=(2, 2), strides=(2, 2), padding="VALID")
|
67 |
-
return hidden_states
|
68 |
-
|
69 |
-
|
70 |
-
class ResnetBlock(nn.Module):
|
71 |
-
in_channels: int
|
72 |
-
out_channels: int = None
|
73 |
-
use_conv_shortcut: bool = False
|
74 |
-
temb_channels: int = 512
|
75 |
-
dropout_prob: float = 0.0
|
76 |
-
dtype: jnp.dtype = jnp.float32
|
77 |
-
|
78 |
-
def setup(self):
|
79 |
-
self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels
|
80 |
-
|
81 |
-
self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
82 |
-
self.conv1 = nn.Conv(
|
83 |
-
self.out_channels_,
|
84 |
-
kernel_size=(3, 3),
|
85 |
-
strides=(1, 1),
|
86 |
-
padding=((1, 1), (1, 1)),
|
87 |
-
dtype=self.dtype,
|
88 |
-
)
|
89 |
-
|
90 |
-
if self.temb_channels:
|
91 |
-
self.temb_proj = nn.Dense(self.out_channels_, dtype=self.dtype)
|
92 |
-
|
93 |
-
self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
94 |
-
self.dropout = nn.Dropout(self.dropout_prob)
|
95 |
-
self.conv2 = nn.Conv(
|
96 |
-
self.out_channels_,
|
97 |
-
kernel_size=(3, 3),
|
98 |
-
strides=(1, 1),
|
99 |
-
padding=((1, 1), (1, 1)),
|
100 |
-
dtype=self.dtype,
|
101 |
-
)
|
102 |
-
|
103 |
-
if self.in_channels != self.out_channels_:
|
104 |
-
if self.use_conv_shortcut:
|
105 |
-
self.conv_shortcut = nn.Conv(
|
106 |
-
self.out_channels_,
|
107 |
-
kernel_size=(3, 3),
|
108 |
-
strides=(1, 1),
|
109 |
-
padding=((1, 1), (1, 1)),
|
110 |
-
dtype=self.dtype,
|
111 |
-
)
|
112 |
-
else:
|
113 |
-
self.nin_shortcut = nn.Conv(
|
114 |
-
self.out_channels_,
|
115 |
-
kernel_size=(1, 1),
|
116 |
-
strides=(1, 1),
|
117 |
-
padding="VALID",
|
118 |
-
dtype=self.dtype,
|
119 |
-
)
|
120 |
-
|
121 |
-
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
122 |
-
residual = hidden_states
|
123 |
-
hidden_states = self.norm1(hidden_states)
|
124 |
-
hidden_states = nn.swish(hidden_states)
|
125 |
-
hidden_states = self.conv1(hidden_states)
|
126 |
-
|
127 |
-
if temb is not None:
|
128 |
-
hidden_states = hidden_states + self.temb_proj(nn.swish(temb))[:, :, None, None] # TODO: check shapes
|
129 |
-
|
130 |
-
hidden_states = self.norm2(hidden_states)
|
131 |
-
hidden_states = nn.swish(hidden_states)
|
132 |
-
hidden_states = self.dropout(hidden_states, deterministic)
|
133 |
-
hidden_states = self.conv2(hidden_states)
|
134 |
-
|
135 |
-
if self.in_channels != self.out_channels_:
|
136 |
-
if self.use_conv_shortcut:
|
137 |
-
residual = self.conv_shortcut(residual)
|
138 |
-
else:
|
139 |
-
residual = self.nin_shortcut(residual)
|
140 |
-
|
141 |
-
return hidden_states + residual
|
142 |
-
|
143 |
-
|
144 |
-
class AttnBlock(nn.Module):
|
145 |
-
in_channels: int
|
146 |
-
dtype: jnp.dtype = jnp.float32
|
147 |
-
|
148 |
-
def setup(self):
|
149 |
-
conv = partial(
|
150 |
-
nn.Conv, self.in_channels, kernel_size=(1, 1), strides=(1, 1), padding="VALID", dtype=self.dtype
|
151 |
-
)
|
152 |
-
|
153 |
-
self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
154 |
-
self.q, self.k, self.v = conv(), conv(), conv()
|
155 |
-
self.proj_out = conv()
|
156 |
-
|
157 |
-
def __call__(self, hidden_states):
|
158 |
-
residual = hidden_states
|
159 |
-
hidden_states = self.norm(hidden_states)
|
160 |
-
|
161 |
-
query = self.q(hidden_states)
|
162 |
-
key = self.k(hidden_states)
|
163 |
-
value = self.v(hidden_states)
|
164 |
-
|
165 |
-
# compute attentions
|
166 |
-
batch, height, width, channels = query.shape
|
167 |
-
query = query.reshape((batch, height * width, channels))
|
168 |
-
key = key.reshape((batch, height * width, channels))
|
169 |
-
attn_weights = jnp.einsum("...qc,...kc->...qk", query, key)
|
170 |
-
attn_weights = attn_weights * (int(channels) ** -0.5)
|
171 |
-
attn_weights = nn.softmax(attn_weights, axis=2)
|
172 |
-
|
173 |
-
## attend to values
|
174 |
-
value = value.reshape((batch, height * width, channels))
|
175 |
-
hidden_states = jnp.einsum("...kc,...qk->...qc", value, attn_weights)
|
176 |
-
hidden_states = hidden_states.reshape((batch, height, width, channels))
|
177 |
-
|
178 |
-
hidden_states = self.proj_out(hidden_states)
|
179 |
-
hidden_states = hidden_states + residual
|
180 |
-
return hidden_states
|
181 |
-
|
182 |
-
|
183 |
-
class UpsamplingBlock(nn.Module):
|
184 |
-
config: VQGANConfig
|
185 |
-
curr_res: int
|
186 |
-
block_idx: int
|
187 |
-
dtype: jnp.dtype = jnp.float32
|
188 |
-
|
189 |
-
def setup(self):
|
190 |
-
if self.block_idx == self.config.num_resolutions - 1:
|
191 |
-
block_in = self.config.ch * self.config.ch_mult[-1]
|
192 |
-
else:
|
193 |
-
block_in = self.config.ch * self.config.ch_mult[self.block_idx + 1]
|
194 |
-
|
195 |
-
block_out = self.config.ch * self.config.ch_mult[self.block_idx]
|
196 |
-
self.temb_ch = 0
|
197 |
-
|
198 |
-
res_blocks = []
|
199 |
-
attn_blocks = []
|
200 |
-
for _ in range(self.config.num_res_blocks + 1):
|
201 |
-
res_blocks.append(
|
202 |
-
ResnetBlock(
|
203 |
-
block_in, block_out, temb_channels=self.temb_ch, dropout_prob=self.config.dropout, dtype=self.dtype
|
204 |
-
)
|
205 |
-
)
|
206 |
-
block_in = block_out
|
207 |
-
if self.curr_res in self.config.attn_resolutions:
|
208 |
-
attn_blocks.append(AttnBlock(block_in, dtype=self.dtype))
|
209 |
-
|
210 |
-
self.block = res_blocks
|
211 |
-
self.attn = attn_blocks
|
212 |
-
|
213 |
-
self.upsample = None
|
214 |
-
if self.block_idx != 0:
|
215 |
-
self.upsample = Upsample(block_in, self.config.resamp_with_conv, dtype=self.dtype)
|
216 |
-
|
217 |
-
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
218 |
-
for res_block in self.block:
|
219 |
-
hidden_states = res_block(hidden_states, temb, deterministic=deterministic)
|
220 |
-
for attn_block in self.attn:
|
221 |
-
hidden_states = attn_block(hidden_states)
|
222 |
-
|
223 |
-
if self.upsample is not None:
|
224 |
-
hidden_states = self.upsample(hidden_states)
|
225 |
-
|
226 |
-
return hidden_states
|
227 |
-
|
228 |
-
|
229 |
-
class DownsamplingBlock(nn.Module):
|
230 |
-
config: VQGANConfig
|
231 |
-
curr_res: int
|
232 |
-
block_idx: int
|
233 |
-
dtype: jnp.dtype = jnp.float32
|
234 |
-
|
235 |
-
def setup(self):
|
236 |
-
in_ch_mult = (1,) + tuple(self.config.ch_mult)
|
237 |
-
block_in = self.config.ch * in_ch_mult[self.block_idx]
|
238 |
-
block_out = self.config.ch * self.config.ch_mult[self.block_idx]
|
239 |
-
self.temb_ch = 0
|
240 |
-
|
241 |
-
res_blocks = []
|
242 |
-
attn_blocks = []
|
243 |
-
for _ in range(self.config.num_res_blocks):
|
244 |
-
res_blocks.append(
|
245 |
-
ResnetBlock(
|
246 |
-
block_in, block_out, temb_channels=self.temb_ch, dropout_prob=self.config.dropout, dtype=self.dtype
|
247 |
-
)
|
248 |
-
)
|
249 |
-
block_in = block_out
|
250 |
-
if self.curr_res in self.config.attn_resolutions:
|
251 |
-
attn_blocks.append(AttnBlock(block_in, dtype=self.dtype))
|
252 |
-
|
253 |
-
self.block = res_blocks
|
254 |
-
self.attn = attn_blocks
|
255 |
-
|
256 |
-
self.downsample = None
|
257 |
-
if self.block_idx != self.config.num_resolutions - 1:
|
258 |
-
self.downsample = Downsample(block_in, self.config.resamp_with_conv, dtype=self.dtype)
|
259 |
-
|
260 |
-
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
261 |
-
for res_block in self.block:
|
262 |
-
hidden_states = res_block(hidden_states, temb, deterministic=deterministic)
|
263 |
-
for attn_block in self.attn:
|
264 |
-
hidden_states = attn_block(hidden_states)
|
265 |
-
|
266 |
-
if self.downsample is not None:
|
267 |
-
hidden_states = self.downsample(hidden_states)
|
268 |
-
|
269 |
-
return hidden_states
|
270 |
-
|
271 |
-
|
272 |
-
class MidBlock(nn.Module):
|
273 |
-
in_channels: int
|
274 |
-
temb_channels: int
|
275 |
-
dropout: float
|
276 |
-
dtype: jnp.dtype = jnp.float32
|
277 |
-
|
278 |
-
def setup(self):
|
279 |
-
self.block_1 = ResnetBlock(
|
280 |
-
self.in_channels,
|
281 |
-
self.in_channels,
|
282 |
-
temb_channels=self.temb_channels,
|
283 |
-
dropout_prob=self.dropout,
|
284 |
-
dtype=self.dtype,
|
285 |
-
)
|
286 |
-
self.attn_1 = AttnBlock(self.in_channels, dtype=self.dtype)
|
287 |
-
self.block_2 = ResnetBlock(
|
288 |
-
self.in_channels,
|
289 |
-
self.in_channels,
|
290 |
-
temb_channels=self.temb_channels,
|
291 |
-
dropout_prob=self.dropout,
|
292 |
-
dtype=self.dtype,
|
293 |
-
)
|
294 |
-
|
295 |
-
def __call__(self, hidden_states, temb=None, deterministic: bool = True):
|
296 |
-
hidden_states = self.block_1(hidden_states, temb, deterministic=deterministic)
|
297 |
-
hidden_states = self.attn_1(hidden_states)
|
298 |
-
hidden_states = self.block_2(hidden_states, temb, deterministic=deterministic)
|
299 |
-
return hidden_states
|
300 |
-
|
301 |
-
|
302 |
-
class Encoder(nn.Module):
|
303 |
-
config: VQGANConfig
|
304 |
-
dtype: jnp.dtype = jnp.float32
|
305 |
-
|
306 |
-
def setup(self):
|
307 |
-
self.temb_ch = 0
|
308 |
-
|
309 |
-
# downsampling
|
310 |
-
self.conv_in = nn.Conv(
|
311 |
-
self.config.ch,
|
312 |
-
kernel_size=(3, 3),
|
313 |
-
strides=(1, 1),
|
314 |
-
padding=((1, 1), (1, 1)),
|
315 |
-
dtype=self.dtype,
|
316 |
-
)
|
317 |
-
|
318 |
-
curr_res = self.config.resolution
|
319 |
-
downsample_blocks = []
|
320 |
-
for i_level in range(self.config.num_resolutions):
|
321 |
-
downsample_blocks.append(DownsamplingBlock(self.config, curr_res, block_idx=i_level, dtype=self.dtype))
|
322 |
-
|
323 |
-
if i_level != self.config.num_resolutions - 1:
|
324 |
-
curr_res = curr_res // 2
|
325 |
-
self.down = downsample_blocks
|
326 |
-
|
327 |
-
# middle
|
328 |
-
mid_channels = self.config.ch * self.config.ch_mult[-1]
|
329 |
-
self.mid = MidBlock(mid_channels, self.temb_ch, self.config.dropout, dtype=self.dtype)
|
330 |
-
|
331 |
-
# end
|
332 |
-
self.norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
333 |
-
self.conv_out = nn.Conv(
|
334 |
-
2 * self.config.z_channels if self.config.double_z else self.config.z_channels,
|
335 |
-
kernel_size=(3, 3),
|
336 |
-
strides=(1, 1),
|
337 |
-
padding=((1, 1), (1, 1)),
|
338 |
-
dtype=self.dtype,
|
339 |
-
)
|
340 |
-
|
341 |
-
def __call__(self, pixel_values, deterministic: bool = True):
|
342 |
-
# timestep embedding
|
343 |
-
temb = None
|
344 |
-
|
345 |
-
# downsampling
|
346 |
-
hidden_states = self.conv_in(pixel_values)
|
347 |
-
for block in self.down:
|
348 |
-
hidden_states = block(hidden_states, temb, deterministic=deterministic)
|
349 |
-
|
350 |
-
# middle
|
351 |
-
hidden_states = self.mid(hidden_states, temb, deterministic=deterministic)
|
352 |
-
|
353 |
-
# end
|
354 |
-
hidden_states = self.norm_out(hidden_states)
|
355 |
-
hidden_states = nn.swish(hidden_states)
|
356 |
-
hidden_states = self.conv_out(hidden_states)
|
357 |
-
|
358 |
-
return hidden_states
|
359 |
-
|
360 |
-
|
361 |
-
class Decoder(nn.Module):
|
362 |
-
config: VQGANConfig
|
363 |
-
dtype: jnp.dtype = jnp.float32
|
364 |
-
|
365 |
-
def setup(self):
|
366 |
-
self.temb_ch = 0
|
367 |
-
|
368 |
-
# compute in_ch_mult, block_in and curr_res at lowest res
|
369 |
-
block_in = self.config.ch * self.config.ch_mult[self.config.num_resolutions - 1]
|
370 |
-
curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1)
|
371 |
-
self.z_shape = (1, self.config.z_channels, curr_res, curr_res)
|
372 |
-
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
373 |
-
|
374 |
-
# z to block_in
|
375 |
-
self.conv_in = nn.Conv(
|
376 |
-
block_in,
|
377 |
-
kernel_size=(3, 3),
|
378 |
-
strides=(1, 1),
|
379 |
-
padding=((1, 1), (1, 1)),
|
380 |
-
dtype=self.dtype,
|
381 |
-
)
|
382 |
-
|
383 |
-
# middle
|
384 |
-
self.mid = MidBlock(block_in, self.temb_ch, self.config.dropout, dtype=self.dtype)
|
385 |
-
|
386 |
-
# upsampling
|
387 |
-
upsample_blocks = []
|
388 |
-
for i_level in reversed(range(self.config.num_resolutions)):
|
389 |
-
upsample_blocks.append(UpsamplingBlock(self.config, curr_res, block_idx=i_level, dtype=self.dtype))
|
390 |
-
if i_level != 0:
|
391 |
-
curr_res = curr_res * 2
|
392 |
-
self.up = list(reversed(upsample_blocks)) # reverse to get consistent order
|
393 |
-
|
394 |
-
# end
|
395 |
-
self.norm_out = nn.GroupNorm(num_groups=32, epsilon=1e-6)
|
396 |
-
self.conv_out = nn.Conv(
|
397 |
-
self.config.out_ch,
|
398 |
-
kernel_size=(3, 3),
|
399 |
-
strides=(1, 1),
|
400 |
-
padding=((1, 1), (1, 1)),
|
401 |
-
dtype=self.dtype,
|
402 |
-
)
|
403 |
-
|
404 |
-
def __call__(self, hidden_states, deterministic: bool = True):
|
405 |
-
# timestep embedding
|
406 |
-
temb = None
|
407 |
-
|
408 |
-
# z to block_in
|
409 |
-
hidden_states = self.conv_in(hidden_states)
|
410 |
-
|
411 |
-
# middle
|
412 |
-
hidden_states = self.mid(hidden_states, temb, deterministic=deterministic)
|
413 |
-
|
414 |
-
# upsampling
|
415 |
-
for block in reversed(self.up):
|
416 |
-
hidden_states = block(hidden_states, temb, deterministic=deterministic)
|
417 |
-
|
418 |
-
# end
|
419 |
-
if self.config.give_pre_end:
|
420 |
-
return hidden_states
|
421 |
-
|
422 |
-
hidden_states = self.norm_out(hidden_states)
|
423 |
-
hidden_states = nn.swish(hidden_states)
|
424 |
-
hidden_states = self.conv_out(hidden_states)
|
425 |
-
|
426 |
-
return hidden_states
|
427 |
-
|
428 |
-
|
429 |
-
class VectorQuantizer(nn.Module):
|
430 |
-
"""
|
431 |
-
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
|
432 |
-
____________________________________________
|
433 |
-
Discretization bottleneck part of the VQ-VAE.
|
434 |
-
Inputs:
|
435 |
-
- n_e : number of embeddings
|
436 |
-
- e_dim : dimension of embedding
|
437 |
-
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2
|
438 |
-
_____________________________________________
|
439 |
-
"""
|
440 |
-
|
441 |
-
config: VQGANConfig
|
442 |
-
dtype: jnp.dtype = jnp.float32
|
443 |
-
|
444 |
-
def setup(self):
|
445 |
-
self.embedding = nn.Embed(self.config.n_embed, self.config.embed_dim, dtype=self.dtype) # TODO: init
|
446 |
-
|
447 |
-
def __call__(self, hidden_states):
|
448 |
-
"""
|
449 |
-
Inputs the output of the encoder network z and maps it to a discrete
|
450 |
-
one-hot vector that is the index of the closest embedding vector e_j
|
451 |
-
z (continuous) -> z_q (discrete)
|
452 |
-
z.shape = (batch, channel, height, width)
|
453 |
-
quantization pipeline:
|
454 |
-
1. get encoder input (B,C,H,W)
|
455 |
-
2. flatten input to (B*H*W,C)
|
456 |
-
"""
|
457 |
-
# flatten
|
458 |
-
hidden_states_flattended = hidden_states.reshape((-1, self.config.embed_dim))
|
459 |
-
|
460 |
-
# dummy op to init the weights, so we can access them below
|
461 |
-
self.embedding(jnp.ones((1, 1), dtype="i4"))
|
462 |
-
|
463 |
-
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
464 |
-
emb_weights = self.variables["params"]["embedding"]["embedding"]
|
465 |
-
distance = (
|
466 |
-
jnp.sum(hidden_states_flattended ** 2, axis=1, keepdims=True)
|
467 |
-
+ jnp.sum(emb_weights ** 2, axis=1)
|
468 |
-
- 2 * jnp.dot(hidden_states_flattended, emb_weights.T)
|
469 |
-
)
|
470 |
-
|
471 |
-
# get quantized latent vectors
|
472 |
-
min_encoding_indices = jnp.argmin(distance, axis=1)
|
473 |
-
z_q = self.embedding(min_encoding_indices).reshape(hidden_states.shape)
|
474 |
-
|
475 |
-
# reshape to (batch, num_tokens)
|
476 |
-
min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1)
|
477 |
-
|
478 |
-
# compute the codebook_loss (q_loss) outside the model
|
479 |
-
# here we return the embeddings and indices
|
480 |
-
return z_q, min_encoding_indices
|
481 |
-
|
482 |
-
def get_codebook_entry(self, indices, shape=None):
|
483 |
-
# indices are expected to be of shape (batch, num_tokens)
|
484 |
-
# get quantized latent vectors
|
485 |
-
batch, num_tokens = indices.shape
|
486 |
-
z_q = self.embedding(indices)
|
487 |
-
z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1)
|
488 |
-
return z_q
|
489 |
-
|
490 |
-
|
491 |
-
class VQModule(nn.Module):
|
492 |
-
config: VQGANConfig
|
493 |
-
dtype: jnp.dtype = jnp.float32
|
494 |
-
|
495 |
-
def setup(self):
|
496 |
-
self.encoder = Encoder(self.config, dtype=self.dtype)
|
497 |
-
self.decoder = Decoder(self.config, dtype=self.dtype)
|
498 |
-
self.quantize = VectorQuantizer(self.config, dtype=self.dtype)
|
499 |
-
self.quant_conv = nn.Conv(
|
500 |
-
self.config.embed_dim,
|
501 |
-
kernel_size=(1, 1),
|
502 |
-
strides=(1, 1),
|
503 |
-
padding="VALID",
|
504 |
-
dtype=self.dtype,
|
505 |
-
)
|
506 |
-
self.post_quant_conv = nn.Conv(
|
507 |
-
self.config.z_channels,
|
508 |
-
kernel_size=(1, 1),
|
509 |
-
strides=(1, 1),
|
510 |
-
padding="VALID",
|
511 |
-
dtype=self.dtype,
|
512 |
-
)
|
513 |
-
|
514 |
-
def encode(self, pixel_values, deterministic: bool = True):
|
515 |
-
hidden_states = self.encoder(pixel_values, deterministic=deterministic)
|
516 |
-
hidden_states = self.quant_conv(hidden_states)
|
517 |
-
quant_states, indices = self.quantize(hidden_states)
|
518 |
-
return quant_states, indices
|
519 |
-
|
520 |
-
def decode(self, hidden_states, deterministic: bool = True):
|
521 |
-
hidden_states = self.post_quant_conv(hidden_states)
|
522 |
-
hidden_states = self.decoder(hidden_states, deterministic=deterministic)
|
523 |
-
return hidden_states
|
524 |
-
|
525 |
-
def decode_code(self, code_b):
|
526 |
-
hidden_states = self.quantize.get_codebook_entry(code_b)
|
527 |
-
hidden_states = self.decode(hidden_states)
|
528 |
-
return hidden_states
|
529 |
-
|
530 |
-
def __call__(self, pixel_values, deterministic: bool = True):
|
531 |
-
quant_states, indices = self.encode(pixel_values, deterministic)
|
532 |
-
hidden_states = self.decode(quant_states, deterministic)
|
533 |
-
return hidden_states, indices
|
534 |
-
|
535 |
-
|
536 |
-
class VQGANPreTrainedModel(FlaxPreTrainedModel):
|
537 |
-
"""
|
538 |
-
An abstract class to handle weights initialization and a simple interface
|
539 |
-
for downloading and loading pretrained models.
|
540 |
-
"""
|
541 |
-
|
542 |
-
config_class = VQGANConfig
|
543 |
-
base_model_prefix = "model"
|
544 |
-
module_class: nn.Module = None
|
545 |
-
|
546 |
-
def __init__(
|
547 |
-
self,
|
548 |
-
config: VQGANConfig,
|
549 |
-
input_shape: Tuple = (1, 256, 256, 3),
|
550 |
-
seed: int = 0,
|
551 |
-
dtype: jnp.dtype = jnp.float32,
|
552 |
-
**kwargs,
|
553 |
-
):
|
554 |
-
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
555 |
-
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
|
556 |
-
|
557 |
-
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
558 |
-
# init input tensors
|
559 |
-
pixel_values = jnp.zeros(input_shape, dtype=jnp.float32)
|
560 |
-
params_rng, dropout_rng = jax.random.split(rng)
|
561 |
-
rngs = {"params": params_rng, "dropout": dropout_rng}
|
562 |
-
|
563 |
-
return self.module.init(rngs, pixel_values)["params"]
|
564 |
-
|
565 |
-
def encode(self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False):
|
566 |
-
# Handle any PRNG if needed
|
567 |
-
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
568 |
-
|
569 |
-
return self.module.apply(
|
570 |
-
{"params": params or self.params}, jnp.array(pixel_values), not train, rngs=rngs, method=self.module.encode
|
571 |
-
)
|
572 |
-
|
573 |
-
def decode(self, hidden_states, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False):
|
574 |
-
# Handle any PRNG if needed
|
575 |
-
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
576 |
-
|
577 |
-
return self.module.apply(
|
578 |
-
{"params": params or self.params},
|
579 |
-
jnp.array(hidden_states),
|
580 |
-
not train,
|
581 |
-
rngs=rngs,
|
582 |
-
method=self.module.decode,
|
583 |
-
)
|
584 |
-
|
585 |
-
def decode_code(self, indices, params: dict = None):
|
586 |
-
return self.module.apply(
|
587 |
-
{"params": params or self.params}, jnp.array(indices, dtype="i4"), method=self.module.decode_code
|
588 |
-
)
|
589 |
-
|
590 |
-
def __call__(
|
591 |
-
self,
|
592 |
-
pixel_values,
|
593 |
-
params: dict = None,
|
594 |
-
dropout_rng: jax.random.PRNGKey = None,
|
595 |
-
train: bool = False,
|
596 |
-
):
|
597 |
-
# Handle any PRNG if needed
|
598 |
-
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
|
599 |
-
|
600 |
-
return self.module.apply(
|
601 |
-
{"params": params or self.params},
|
602 |
-
jnp.array(pixel_values),
|
603 |
-
not train,
|
604 |
-
rngs=rngs,
|
605 |
-
)
|
606 |
-
|
607 |
-
|
608 |
-
class VQModel(VQGANPreTrainedModel):
|
609 |
-
module_class = VQModule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/{notebooks/encoding → encoding}/vqgan-jax-encoding-with-captions.ipynb
RENAMED
@@ -50,14 +50,6 @@
|
|
50 |
"## VQGAN-JAX model"
|
51 |
]
|
52 |
},
|
53 |
-
{
|
54 |
-
"cell_type": "markdown",
|
55 |
-
"id": "bb408f6c",
|
56 |
-
"metadata": {},
|
57 |
-
"source": [
|
58 |
-
"`dalle_mini` is a local package that contains the VQGAN-JAX model and other utilities."
|
59 |
-
]
|
60 |
-
},
|
61 |
{
|
62 |
"cell_type": "code",
|
63 |
"execution_count": 2,
|
@@ -65,7 +57,7 @@
|
|
65 |
"metadata": {},
|
66 |
"outputs": [],
|
67 |
"source": [
|
68 |
-
"from
|
69 |
]
|
70 |
},
|
71 |
{
|
|
|
50 |
"## VQGAN-JAX model"
|
51 |
]
|
52 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
{
|
54 |
"cell_type": "code",
|
55 |
"execution_count": 2,
|
|
|
57 |
"metadata": {},
|
58 |
"outputs": [],
|
59 |
"source": [
|
60 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel"
|
61 |
]
|
62 |
},
|
63 |
{
|
dev/{notebooks/encoding → encoding}/vqgan-jax-encoding-yfcc100m.ipynb
RENAMED
@@ -52,14 +52,6 @@
|
|
52 |
"## VQGAN-JAX model"
|
53 |
]
|
54 |
},
|
55 |
-
{
|
56 |
-
"cell_type": "markdown",
|
57 |
-
"id": "bb408f6c",
|
58 |
-
"metadata": {},
|
59 |
-
"source": [
|
60 |
-
"`dalle_mini` is a local package that contains the VQGAN-JAX model and other utilities."
|
61 |
-
]
|
62 |
-
},
|
63 |
{
|
64 |
"cell_type": "code",
|
65 |
"execution_count": 93,
|
@@ -67,7 +59,7 @@
|
|
67 |
"metadata": {},
|
68 |
"outputs": [],
|
69 |
"source": [
|
70 |
-
"from
|
71 |
]
|
72 |
},
|
73 |
{
|
@@ -1111,9 +1103,13 @@
|
|
1111 |
}
|
1112 |
],
|
1113 |
"metadata": {
|
|
|
|
|
|
|
1114 |
"kernelspec": {
|
1115 |
-
"
|
1116 |
-
"
|
|
|
1117 |
},
|
1118 |
"language_info": {
|
1119 |
"codemirror_mode": {
|
@@ -1125,12 +1121,9 @@
|
|
1125 |
"name": "python",
|
1126 |
"nbconvert_exporter": "python",
|
1127 |
"pygments_lexer": "ipython3",
|
1128 |
-
"version": "3.
|
1129 |
-
},
|
1130 |
-
"interpreter": {
|
1131 |
-
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
|
1132 |
}
|
1133 |
},
|
1134 |
"nbformat": 4,
|
1135 |
"nbformat_minor": 5
|
1136 |
-
}
|
|
|
52 |
"## VQGAN-JAX model"
|
53 |
]
|
54 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
{
|
56 |
"cell_type": "code",
|
57 |
"execution_count": 93,
|
|
|
59 |
"metadata": {},
|
60 |
"outputs": [],
|
61 |
"source": [
|
62 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel"
|
63 |
]
|
64 |
},
|
65 |
{
|
|
|
1103 |
}
|
1104 |
],
|
1105 |
"metadata": {
|
1106 |
+
"interpreter": {
|
1107 |
+
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
|
1108 |
+
},
|
1109 |
"kernelspec": {
|
1110 |
+
"display_name": "Python 3 (ipykernel)",
|
1111 |
+
"language": "python",
|
1112 |
+
"name": "python3"
|
1113 |
},
|
1114 |
"language_info": {
|
1115 |
"codemirror_mode": {
|
|
|
1121 |
"name": "python",
|
1122 |
"nbconvert_exporter": "python",
|
1123 |
"pygments_lexer": "ipython3",
|
1124 |
+
"version": "3.8.10"
|
|
|
|
|
|
|
1125 |
}
|
1126 |
},
|
1127 |
"nbformat": 4,
|
1128 |
"nbformat_minor": 5
|
1129 |
+
}
|
dev/{notebooks/encoding → encoding}/vqgan-jax-encoding.ipynb
RENAMED
File without changes
|
dev/{seq2seq/environment.yaml → environment.yaml}
RENAMED
File without changes
|
dev/{predictions → inference}/README.md
RENAMED
File without changes
|
dev/{predictions → inference}/dalle_mini
RENAMED
File without changes
|
dev/inference/inference_pipeline.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dev/inference/wandb-examples-from-backend.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
import wandb
|
6 |
+
import os
|
7 |
+
|
8 |
+
from dalle_mini.backend import ServiceError, get_images_from_backend
|
9 |
+
from dalle_mini.helpers import captioned_strip
|
10 |
+
|
11 |
+
os.environ["WANDB_SILENT"] = "true"
|
12 |
+
os.environ["WANDB_CONSOLE"] = "off"
|
13 |
+
|
14 |
+
def log_to_wandb(prompts):
|
15 |
+
try:
|
16 |
+
backend_url = os.environ["BACKEND_SERVER"]
|
17 |
+
for _ in range(1):
|
18 |
+
for prompt in prompts:
|
19 |
+
print(f"Getting selections for: {prompt}")
|
20 |
+
# make a separate run per prompt
|
21 |
+
with wandb.init(
|
22 |
+
entity='wandb',
|
23 |
+
project='hf-flax-dalle-mini',
|
24 |
+
job_type='predictions',# tags=['openai'],
|
25 |
+
config={'prompt': prompt}
|
26 |
+
):
|
27 |
+
imgs = []
|
28 |
+
selected = get_images_from_backend(prompt, backend_url)
|
29 |
+
strip = captioned_strip(selected, prompt)
|
30 |
+
imgs.append(wandb.Image(strip))
|
31 |
+
wandb.log({"images": imgs})
|
32 |
+
except ServiceError as error:
|
33 |
+
print(f"Service unavailable, status: {error.status_code}")
|
34 |
+
except KeyError:
|
35 |
+
print("Error: BACKEND_SERVER unset")
|
36 |
+
|
37 |
+
prompts = [
|
38 |
+
# "white snow covered mountain under blue sky during daytime",
|
39 |
+
# "aerial view of beach during daytime",
|
40 |
+
# "aerial view of beach at night",
|
41 |
+
# "a farmhouse surrounded by beautiful flowers",
|
42 |
+
# "an armchair in the shape of an avocado",
|
43 |
+
# "young woman riding her bike trough a forest",
|
44 |
+
# "a unicorn is passing by a rainbow in a field of flowers",
|
45 |
+
# "illustration of a baby shark swimming around corals",
|
46 |
+
# "painting of an oniric forest glade surrounded by tall trees",
|
47 |
+
# "sunset over green mountains",
|
48 |
+
# "a forest glade surrounded by tall trees in a sunny Spring morning",
|
49 |
+
# "fishing village under the moonlight in a serene sunset",
|
50 |
+
# "cartoon of a carrot with big eyes",
|
51 |
+
# "still life in the style of Kandinsky",
|
52 |
+
# "still life in the style of Picasso",
|
53 |
+
# "a graphite sketch of a gothic cathedral",
|
54 |
+
# "a graphite sketch of Elon Musk",
|
55 |
+
# "a watercolor pond with green leaves and yellow flowers",
|
56 |
+
# "a logo of a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps",
|
57 |
+
# "happy celebration in a small village in Africa",
|
58 |
+
# "a logo of an armchair in the shape of an avocado"
|
59 |
+
# "Pele and Maradona in a hypothetical match",
|
60 |
+
# "Mohammed Ali and Mike Tyson in a hypothetical match",
|
61 |
+
# "a storefront that has the word 'openai' written on it",
|
62 |
+
# "a pentagonal green clock",
|
63 |
+
# "a collection of glasses is sitting on a table",
|
64 |
+
# "a small red block sitting on a large green block",
|
65 |
+
# "an extreme close-up view of a capybara sitting in a field",
|
66 |
+
# "a cross-section view of a walnut",
|
67 |
+
# "a professional high-quality emoji of a lovestruck cup of boba",
|
68 |
+
# "a photo of san francisco's golden gate bridge",
|
69 |
+
# "an illustration of a baby daikon radish in a tutu walking a dog",
|
70 |
+
# "a picture of the Eiffel tower on the Moon",
|
71 |
+
# "a colorful stairway to heaven",
|
72 |
+
"this is a detailed high-resolution scan of a human brain"
|
73 |
+
]
|
74 |
+
|
75 |
+
for _ in range(1):
|
76 |
+
log_to_wandb(prompts)
|
dev/{predictions → inference}/wandb-examples.py
RENAMED
@@ -4,16 +4,14 @@
|
|
4 |
import random
|
5 |
|
6 |
import jax
|
7 |
-
import flax.linen as nn
|
8 |
from flax.training.common_utils import shard
|
9 |
from flax.jax_utils import replicate, unreplicate
|
10 |
|
11 |
from transformers.models.bart.modeling_flax_bart import *
|
12 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
13 |
|
14 |
-
import
|
15 |
|
16 |
-
import requests
|
17 |
from PIL import Image
|
18 |
import numpy as np
|
19 |
import matplotlib.pyplot as plt
|
@@ -23,58 +21,24 @@ import torchvision.transforms as T
|
|
23 |
import torchvision.transforms.functional as TF
|
24 |
from torchvision.transforms import InterpolationMode
|
25 |
|
26 |
-
from dalle_mini.
|
27 |
-
|
28 |
-
# TODO: set those args in a config file
|
29 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
30 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
31 |
-
BOS_TOKEN_ID = 16384
|
32 |
-
BASE_MODEL = 'facebook/bart-large-cnn'
|
33 |
-
|
34 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
35 |
-
def setup(self):
|
36 |
-
# we keep shared to easily load pre-trained weights
|
37 |
-
self.shared = nn.Embed(
|
38 |
-
self.config.vocab_size,
|
39 |
-
self.config.d_model,
|
40 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
41 |
-
dtype=self.dtype,
|
42 |
-
)
|
43 |
-
# a separate embedding is used for the decoder
|
44 |
-
self.decoder_embed = nn.Embed(
|
45 |
-
OUTPUT_VOCAB_SIZE,
|
46 |
-
self.config.d_model,
|
47 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
48 |
-
dtype=self.dtype,
|
49 |
-
)
|
50 |
-
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
51 |
-
|
52 |
-
# the decoder has a different config
|
53 |
-
decoder_config = BartConfig(self.config.to_dict())
|
54 |
-
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
55 |
-
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
56 |
-
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
57 |
-
|
58 |
-
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
59 |
-
def setup(self):
|
60 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
61 |
-
self.lm_head = nn.Dense(
|
62 |
-
OUTPUT_VOCAB_SIZE,
|
63 |
-
use_bias=False,
|
64 |
-
dtype=self.dtype,
|
65 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
66 |
-
)
|
67 |
-
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
68 |
-
|
69 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
70 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
71 |
|
|
|
|
|
72 |
|
73 |
import wandb
|
74 |
import os
|
|
|
|
|
|
|
|
|
75 |
os.environ["WANDB_SILENT"] = "true"
|
76 |
os.environ["WANDB_CONSOLE"] = "off"
|
77 |
|
|
|
|
|
|
|
78 |
# set id to None so our latest images don't get overwritten
|
79 |
id = None
|
80 |
run = wandb.init(id=id,
|
@@ -87,8 +51,10 @@ artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-4oh3u7ca:latest', ty
|
|
87 |
artifact_dir = artifact.download()
|
88 |
|
89 |
# create our model
|
90 |
-
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
91 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
|
|
|
|
|
|
92 |
model.config.force_bos_token_to_be_generated = False
|
93 |
model.config.forced_bos_token_id = None
|
94 |
model.config.forced_eos_token_id = None
|
@@ -143,9 +109,6 @@ p_get_images = jax.pmap(get_images, "batch")
|
|
143 |
bart_params = replicate(model.params)
|
144 |
vqgan_params = replicate(vqgan.params)
|
145 |
|
146 |
-
# ## CLIP Scoring
|
147 |
-
from transformers import CLIPProcessor, FlaxCLIPModel
|
148 |
-
|
149 |
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
150 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
151 |
|
@@ -170,16 +133,12 @@ def hallucinate(prompt, num_images=64):
|
|
170 |
|
171 |
def clip_top_k(prompt, images, k=8):
|
172 |
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
|
|
173 |
outputs = clip(**inputs)
|
174 |
logits = outputs.logits_per_text
|
175 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
176 |
return [images[score] for score in scores]
|
177 |
|
178 |
-
|
179 |
-
# ## Log to wandb
|
180 |
-
|
181 |
-
from dalle_mini.helpers import captioned_strip
|
182 |
-
|
183 |
def log_to_wandb(prompts):
|
184 |
strips = []
|
185 |
for prompt in prompts:
|
|
|
4 |
import random
|
5 |
|
6 |
import jax
|
|
|
7 |
from flax.training.common_utils import shard
|
8 |
from flax.jax_utils import replicate, unreplicate
|
9 |
|
10 |
from transformers.models.bart.modeling_flax_bart import *
|
11 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
12 |
|
13 |
+
import os
|
14 |
|
|
|
15 |
from PIL import Image
|
16 |
import numpy as np
|
17 |
import matplotlib.pyplot as plt
|
|
|
21 |
import torchvision.transforms.functional as TF
|
22 |
from torchvision.transforms import InterpolationMode
|
23 |
|
24 |
+
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
25 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# ## CLIP Scoring
|
28 |
+
from transformers import CLIPProcessor, FlaxCLIPModel
|
29 |
|
30 |
import wandb
|
31 |
import os
|
32 |
+
|
33 |
+
from dalle_mini.helpers import captioned_strip
|
34 |
+
|
35 |
+
|
36 |
os.environ["WANDB_SILENT"] = "true"
|
37 |
os.environ["WANDB_CONSOLE"] = "off"
|
38 |
|
39 |
+
# TODO: used for legacy support
|
40 |
+
BASE_MODEL = 'facebook/bart-large-cnn'
|
41 |
+
|
42 |
# set id to None so our latest images don't get overwritten
|
43 |
id = None
|
44 |
run = wandb.init(id=id,
|
|
|
51 |
artifact_dir = artifact.download()
|
52 |
|
53 |
# create our model
|
|
|
54 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
55 |
+
|
56 |
+
# TODO: legacy support (earlier models)
|
57 |
+
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
58 |
model.config.force_bos_token_to_be_generated = False
|
59 |
model.config.forced_bos_token_id = None
|
60 |
model.config.forced_eos_token_id = None
|
|
|
109 |
bart_params = replicate(model.params)
|
110 |
vqgan_params = replicate(vqgan.params)
|
111 |
|
|
|
|
|
|
|
112 |
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
113 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
114 |
|
|
|
133 |
|
134 |
def clip_top_k(prompt, images, k=8):
|
135 |
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
136 |
+
# FIXME: image should be resized and normalized prior to being processed by CLIP
|
137 |
outputs = clip(**inputs)
|
138 |
logits = outputs.logits_per_text
|
139 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
140 |
return [images[score] for score in scores]
|
141 |
|
|
|
|
|
|
|
|
|
|
|
142 |
def log_to_wandb(prompts):
|
143 |
strips = []
|
144 |
for prompt in prompts:
|
dev/notebooks/README.md
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
# Notebooks
|
2 |
-
|
3 |
-
These notebooks were used during development.
|
4 |
-
|
5 |
-
TODO: This section requires some refactor and clean up.
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/CustomBARTv4b_model-generate.ipynb
DELETED
@@ -1,394 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {
|
6 |
-
"id": "ewer-Q-0w2xA"
|
7 |
-
},
|
8 |
-
"source": [
|
9 |
-
"# Installation"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"cell_type": "code",
|
14 |
-
"execution_count": null,
|
15 |
-
"metadata": {
|
16 |
-
"colab": {
|
17 |
-
"base_uri": "https://localhost:8080/"
|
18 |
-
},
|
19 |
-
"id": "NpsF9ipLLl2s",
|
20 |
-
"outputId": "10bf54aa-b89d-4e42-9777-bc97b00a5f32"
|
21 |
-
},
|
22 |
-
"outputs": [],
|
23 |
-
"source": [
|
24 |
-
"!pip install git+https://github.com/huggingface/transformers/\n",
|
25 |
-
"!pip install git+https://github.com/google/flax"
|
26 |
-
]
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"cell_type": "code",
|
30 |
-
"execution_count": null,
|
31 |
-
"metadata": {
|
32 |
-
"id": "M1wVkrpjU6zO"
|
33 |
-
},
|
34 |
-
"outputs": [],
|
35 |
-
"source": [
|
36 |
-
"%load_ext autoreload\n",
|
37 |
-
"%autoreload 2"
|
38 |
-
]
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"cell_type": "markdown",
|
42 |
-
"metadata": {
|
43 |
-
"id": "t47CH1H_IOT8"
|
44 |
-
},
|
45 |
-
"source": [
|
46 |
-
"# Custom BART Model"
|
47 |
-
]
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"cell_type": "code",
|
51 |
-
"execution_count": null,
|
52 |
-
"metadata": {
|
53 |
-
"id": "9jQnM6S2vCpn"
|
54 |
-
},
|
55 |
-
"outputs": [],
|
56 |
-
"source": [
|
57 |
-
"# TODO: set those args in a config file\n",
|
58 |
-
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
59 |
-
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
60 |
-
"BOS_TOKEN_ID = 16384\n",
|
61 |
-
"BASE_MODEL = 'facebook/bart-large'"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"cell_type": "code",
|
66 |
-
"execution_count": null,
|
67 |
-
"metadata": {
|
68 |
-
"id": "_eEaJVxAKpV5"
|
69 |
-
},
|
70 |
-
"outputs": [],
|
71 |
-
"source": [
|
72 |
-
"import jax\n",
|
73 |
-
"import flax.linen as nn\n",
|
74 |
-
"\n",
|
75 |
-
"from transformers.models.bart.modeling_flax_bart import *\n",
|
76 |
-
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
77 |
-
"\n",
|
78 |
-
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
79 |
-
" def setup(self):\n",
|
80 |
-
" # we keep shared to easily load pre-trained weights\n",
|
81 |
-
" self.shared = nn.Embed(\n",
|
82 |
-
" self.config.vocab_size,\n",
|
83 |
-
" self.config.d_model,\n",
|
84 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
85 |
-
" dtype=self.dtype,\n",
|
86 |
-
" )\n",
|
87 |
-
" # a separate embedding is used for the decoder\n",
|
88 |
-
" self.decoder_embed = nn.Embed(\n",
|
89 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
90 |
-
" self.config.d_model,\n",
|
91 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
92 |
-
" dtype=self.dtype,\n",
|
93 |
-
" )\n",
|
94 |
-
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
95 |
-
"\n",
|
96 |
-
" # the decoder has a different config\n",
|
97 |
-
" decoder_config = BartConfig(self.config.to_dict())\n",
|
98 |
-
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
99 |
-
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
100 |
-
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
101 |
-
"\n",
|
102 |
-
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
103 |
-
" def setup(self):\n",
|
104 |
-
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
105 |
-
" self.lm_head = nn.Dense(\n",
|
106 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
107 |
-
" use_bias=False,\n",
|
108 |
-
" dtype=self.dtype,\n",
|
109 |
-
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
110 |
-
" )\n",
|
111 |
-
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
112 |
-
"\n",
|
113 |
-
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
114 |
-
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
115 |
-
]
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"cell_type": "code",
|
119 |
-
"execution_count": null,
|
120 |
-
"metadata": {
|
121 |
-
"colab": {
|
122 |
-
"base_uri": "https://localhost:8080/"
|
123 |
-
},
|
124 |
-
"id": "S7CP9Td9m2ge",
|
125 |
-
"outputId": "5638ef68-9c40-46f7-90ba-a4d05b61360d"
|
126 |
-
},
|
127 |
-
"outputs": [],
|
128 |
-
"source": [
|
129 |
-
"# load pre-trained model for encoder weights\n",
|
130 |
-
"base_model = FlaxBartForConditionalGeneration.from_pretrained(BASE_MODEL)"
|
131 |
-
]
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"cell_type": "code",
|
135 |
-
"execution_count": null,
|
136 |
-
"metadata": {
|
137 |
-
"id": "6lmynR-poceH"
|
138 |
-
},
|
139 |
-
"outputs": [],
|
140 |
-
"source": [
|
141 |
-
"# set up our new model config\n",
|
142 |
-
"config = BartConfig.from_pretrained(BASE_MODEL)\n",
|
143 |
-
"config.tie_word_embeddings = False\n",
|
144 |
-
"config.decoder_start_token_id = BOS_TOKEN_ID\n",
|
145 |
-
"config.bos_token_id = BOS_TOKEN_ID # should not be used\n",
|
146 |
-
"config.pos_token_id = BOS_TOKEN_ID # should not be used\n",
|
147 |
-
"#config.eos_token_id = None # prevents generation from stopping until we reach max_length"
|
148 |
-
]
|
149 |
-
},
|
150 |
-
{
|
151 |
-
"cell_type": "code",
|
152 |
-
"execution_count": null,
|
153 |
-
"metadata": {
|
154 |
-
"id": "_6-XKK40oEfP"
|
155 |
-
},
|
156 |
-
"outputs": [],
|
157 |
-
"source": [
|
158 |
-
"# create our model and initialize it randomly\n",
|
159 |
-
"model = CustomFlaxBartForConditionalGeneration(config)"
|
160 |
-
]
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"cell_type": "code",
|
164 |
-
"execution_count": null,
|
165 |
-
"metadata": {
|
166 |
-
"id": "-r_hZestr-NR"
|
167 |
-
},
|
168 |
-
"outputs": [],
|
169 |
-
"source": [
|
170 |
-
"# use pretrained weights\n",
|
171 |
-
"model.params['model']['encoder'] = base_model.params['model']['encoder']\n",
|
172 |
-
"model.params['model']['shared'] = base_model.params['model']['shared']"
|
173 |
-
]
|
174 |
-
},
|
175 |
-
{
|
176 |
-
"cell_type": "code",
|
177 |
-
"execution_count": null,
|
178 |
-
"metadata": {
|
179 |
-
"id": "5NEX8f62sVjx"
|
180 |
-
},
|
181 |
-
"outputs": [],
|
182 |
-
"source": [
|
183 |
-
"# no need for base_model anymore\n",
|
184 |
-
"del base_model"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": null,
|
190 |
-
"metadata": {
|
191 |
-
"colab": {
|
192 |
-
"base_uri": "https://localhost:8080/"
|
193 |
-
},
|
194 |
-
"id": "Jz032w73nHEf",
|
195 |
-
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49"
|
196 |
-
},
|
197 |
-
"outputs": [],
|
198 |
-
"source": [
|
199 |
-
"# we verify that the shape has not been modified\n",
|
200 |
-
"model.params['final_logits_bias'].shape"
|
201 |
-
]
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"cell_type": "markdown",
|
205 |
-
"metadata": {
|
206 |
-
"id": "zLl24Ez5t7x1"
|
207 |
-
},
|
208 |
-
"source": [
|
209 |
-
"## Inference"
|
210 |
-
]
|
211 |
-
},
|
212 |
-
{
|
213 |
-
"cell_type": "code",
|
214 |
-
"execution_count": null,
|
215 |
-
"metadata": {
|
216 |
-
"id": "XLLA2NK3uDQr"
|
217 |
-
},
|
218 |
-
"outputs": [],
|
219 |
-
"source": [
|
220 |
-
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)"
|
221 |
-
]
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"cell_type": "code",
|
225 |
-
"execution_count": null,
|
226 |
-
"metadata": {
|
227 |
-
"colab": {
|
228 |
-
"base_uri": "https://localhost:8080/"
|
229 |
-
},
|
230 |
-
"id": "Ntow53I_t81D",
|
231 |
-
"outputId": "59289cdd-1429-4720-cc87-88810c4b99ac"
|
232 |
-
},
|
233 |
-
"outputs": [],
|
234 |
-
"source": [
|
235 |
-
"text = \"My friends are cool but they eat too many carbs.\"\n",
|
236 |
-
"inputs = tokenizer(text, max_length=1024, return_tensors='jax')\n",
|
237 |
-
"encoder_outputs = model.encode(**inputs)"
|
238 |
-
]
|
239 |
-
},
|
240 |
-
{
|
241 |
-
"cell_type": "code",
|
242 |
-
"execution_count": null,
|
243 |
-
"metadata": {
|
244 |
-
"colab": {
|
245 |
-
"base_uri": "https://localhost:8080/"
|
246 |
-
},
|
247 |
-
"id": "vcRNJnJ_uJOJ",
|
248 |
-
"outputId": "025afd54-7908-4a9c-fb59-e40bd3458711"
|
249 |
-
},
|
250 |
-
"outputs": [],
|
251 |
-
"source": [
|
252 |
-
"decoder_start_token_id = model.config.decoder_start_token_id\n",
|
253 |
-
"decoder_start_token_id"
|
254 |
-
]
|
255 |
-
},
|
256 |
-
{
|
257 |
-
"cell_type": "code",
|
258 |
-
"execution_count": null,
|
259 |
-
"metadata": {
|
260 |
-
"id": "6QWmEwL_uMld"
|
261 |
-
},
|
262 |
-
"outputs": [],
|
263 |
-
"source": [
|
264 |
-
"decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype=\"i4\") * decoder_start_token_id\n",
|
265 |
-
"outputs = model.decode(decoder_input_ids, encoder_outputs)"
|
266 |
-
]
|
267 |
-
},
|
268 |
-
{
|
269 |
-
"cell_type": "code",
|
270 |
-
"execution_count": null,
|
271 |
-
"metadata": {
|
272 |
-
"colab": {
|
273 |
-
"base_uri": "https://localhost:8080/"
|
274 |
-
},
|
275 |
-
"id": "c_ys3yWBothF",
|
276 |
-
"outputId": "40d4d584-e0a8-44cb-bbea-0ffa38d50a53"
|
277 |
-
},
|
278 |
-
"outputs": [],
|
279 |
-
"source": [
|
280 |
-
"outputs"
|
281 |
-
]
|
282 |
-
},
|
283 |
-
{
|
284 |
-
"cell_type": "code",
|
285 |
-
"execution_count": null,
|
286 |
-
"metadata": {
|
287 |
-
"colab": {
|
288 |
-
"base_uri": "https://localhost:8080/"
|
289 |
-
},
|
290 |
-
"id": "O6s0wtB_uTC_",
|
291 |
-
"outputId": "bc0e9e80-e346-4e99-d28e-3f658eda1f66"
|
292 |
-
},
|
293 |
-
"outputs": [],
|
294 |
-
"source": [
|
295 |
-
"outputs.logits.shape"
|
296 |
-
]
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"cell_type": "code",
|
300 |
-
"execution_count": null,
|
301 |
-
"metadata": {
|
302 |
-
"colab": {
|
303 |
-
"base_uri": "https://localhost:8080/"
|
304 |
-
},
|
305 |
-
"id": "ELzemGP3uBzy",
|
306 |
-
"outputId": "dc12f98a-1ccf-450d-ba2a-9c29d7d14885"
|
307 |
-
},
|
308 |
-
"outputs": [],
|
309 |
-
"source": [
|
310 |
-
"outputs.logits.argmax(axis=-1)"
|
311 |
-
]
|
312 |
-
},
|
313 |
-
{
|
314 |
-
"cell_type": "code",
|
315 |
-
"execution_count": null,
|
316 |
-
"metadata": {
|
317 |
-
"colab": {
|
318 |
-
"base_uri": "https://localhost:8080/"
|
319 |
-
},
|
320 |
-
"id": "fQjikkGEunpx",
|
321 |
-
"outputId": "3dba0209-ad4e-4069-be38-6c599c677ef1"
|
322 |
-
},
|
323 |
-
"outputs": [],
|
324 |
-
"source": [
|
325 |
-
"model.config.bos_token_id, model.config.eos_token_id, model.config.pad_token_id"
|
326 |
-
]
|
327 |
-
},
|
328 |
-
{
|
329 |
-
"cell_type": "code",
|
330 |
-
"execution_count": null,
|
331 |
-
"metadata": {
|
332 |
-
"id": "P32mJJSbrU1F"
|
333 |
-
},
|
334 |
-
"outputs": [],
|
335 |
-
"source": [
|
336 |
-
"input_ids_test = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='jax')"
|
337 |
-
]
|
338 |
-
},
|
339 |
-
{
|
340 |
-
"cell_type": "code",
|
341 |
-
"execution_count": null,
|
342 |
-
"metadata": {
|
343 |
-
"id": "C7cHbIHruELT"
|
344 |
-
},
|
345 |
-
"outputs": [],
|
346 |
-
"source": [
|
347 |
-
"greedy_output = model.generate(input_ids_test, max_length=50)"
|
348 |
-
]
|
349 |
-
},
|
350 |
-
{
|
351 |
-
"cell_type": "code",
|
352 |
-
"execution_count": null,
|
353 |
-
"metadata": {
|
354 |
-
"colab": {
|
355 |
-
"base_uri": "https://localhost:8080/"
|
356 |
-
},
|
357 |
-
"id": "jYugh9cOuwc9",
|
358 |
-
"outputId": "19c3a2ee-e7bc-4f1f-9c86-06bd7337b537"
|
359 |
-
},
|
360 |
-
"outputs": [],
|
361 |
-
"source": [
|
362 |
-
"greedy_output[0]"
|
363 |
-
]
|
364 |
-
}
|
365 |
-
],
|
366 |
-
"metadata": {
|
367 |
-
"accelerator": "TPU",
|
368 |
-
"colab": {
|
369 |
-
"collapsed_sections": [],
|
370 |
-
"machine_shape": "hm",
|
371 |
-
"name": "CustomBARTv4b-model-generate.ipynb",
|
372 |
-
"provenance": []
|
373 |
-
},
|
374 |
-
"kernelspec": {
|
375 |
-
"display_name": "Python 3 (ipykernel)",
|
376 |
-
"language": "python",
|
377 |
-
"name": "python3"
|
378 |
-
},
|
379 |
-
"language_info": {
|
380 |
-
"codemirror_mode": {
|
381 |
-
"name": "ipython",
|
382 |
-
"version": 3
|
383 |
-
},
|
384 |
-
"file_extension": ".py",
|
385 |
-
"mimetype": "text/x-python",
|
386 |
-
"name": "python",
|
387 |
-
"nbconvert_exporter": "python",
|
388 |
-
"pygments_lexer": "ipython3",
|
389 |
-
"version": "3.8.5"
|
390 |
-
}
|
391 |
-
},
|
392 |
-
"nbformat": 4,
|
393 |
-
"nbformat_minor": 4
|
394 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/demo_notebook.ipynb
DELETED
@@ -1,387 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {
|
6 |
-
"id": "ewer-Q-0w2xA"
|
7 |
-
},
|
8 |
-
"source": [
|
9 |
-
"# Installation"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"cell_type": "code",
|
14 |
-
"execution_count": null,
|
15 |
-
"metadata": {
|
16 |
-
"colab": {
|
17 |
-
"base_uri": "https://localhost:8080/"
|
18 |
-
},
|
19 |
-
"id": "NpsF9ipLLl2s",
|
20 |
-
"outputId": "10bf54aa-b89d-4e42-9777-bc97b00a5f32"
|
21 |
-
},
|
22 |
-
"outputs": [],
|
23 |
-
"source": [
|
24 |
-
"#!pip install git+https://github.com/huggingface/transformers/\n",
|
25 |
-
"#!pip install git+https://github.com/google/flax"
|
26 |
-
]
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"cell_type": "code",
|
30 |
-
"execution_count": null,
|
31 |
-
"metadata": {
|
32 |
-
"id": "M1wVkrpjU6zO"
|
33 |
-
},
|
34 |
-
"outputs": [],
|
35 |
-
"source": [
|
36 |
-
"%load_ext autoreload\n",
|
37 |
-
"%autoreload 2"
|
38 |
-
]
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"cell_type": "code",
|
42 |
-
"execution_count": null,
|
43 |
-
"metadata": {},
|
44 |
-
"outputs": [],
|
45 |
-
"source": [
|
46 |
-
"%cd ../../vqgan-jax"
|
47 |
-
]
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"cell_type": "markdown",
|
51 |
-
"metadata": {
|
52 |
-
"id": "t47CH1H_IOT8"
|
53 |
-
},
|
54 |
-
"source": [
|
55 |
-
"# Custom BART Model"
|
56 |
-
]
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"cell_type": "code",
|
60 |
-
"execution_count": null,
|
61 |
-
"metadata": {
|
62 |
-
"id": "9jQnM6S2vCpn"
|
63 |
-
},
|
64 |
-
"outputs": [],
|
65 |
-
"source": [
|
66 |
-
"# TODO: set those args in a config file\n",
|
67 |
-
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
68 |
-
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
69 |
-
"BOS_TOKEN_ID = 16384\n",
|
70 |
-
"BASE_MODEL = 'facebook/bart-large'"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "code",
|
75 |
-
"execution_count": null,
|
76 |
-
"metadata": {
|
77 |
-
"id": "_eEaJVxAKpV5"
|
78 |
-
},
|
79 |
-
"outputs": [],
|
80 |
-
"source": [
|
81 |
-
"import jax\n",
|
82 |
-
"import flax.linen as nn\n",
|
83 |
-
"\n",
|
84 |
-
"from transformers.models.bart.modeling_flax_bart import *\n",
|
85 |
-
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
86 |
-
"\n",
|
87 |
-
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
88 |
-
" def setup(self):\n",
|
89 |
-
" # we keep shared to easily load pre-trained weights\n",
|
90 |
-
" self.shared = nn.Embed(\n",
|
91 |
-
" self.config.vocab_size,\n",
|
92 |
-
" self.config.d_model,\n",
|
93 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
94 |
-
" dtype=self.dtype,\n",
|
95 |
-
" )\n",
|
96 |
-
" # a separate embedding is used for the decoder\n",
|
97 |
-
" self.decoder_embed = nn.Embed(\n",
|
98 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
99 |
-
" self.config.d_model,\n",
|
100 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
101 |
-
" dtype=self.dtype,\n",
|
102 |
-
" )\n",
|
103 |
-
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
104 |
-
"\n",
|
105 |
-
" # the decoder has a different config\n",
|
106 |
-
" decoder_config = BartConfig(self.config.to_dict())\n",
|
107 |
-
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
108 |
-
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
109 |
-
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
110 |
-
"\n",
|
111 |
-
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
112 |
-
" def setup(self):\n",
|
113 |
-
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
114 |
-
" self.lm_head = nn.Dense(\n",
|
115 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
116 |
-
" use_bias=False,\n",
|
117 |
-
" dtype=self.dtype,\n",
|
118 |
-
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
119 |
-
" )\n",
|
120 |
-
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
121 |
-
"\n",
|
122 |
-
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
123 |
-
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"cell_type": "code",
|
128 |
-
"execution_count": null,
|
129 |
-
"metadata": {
|
130 |
-
"scrolled": true
|
131 |
-
},
|
132 |
-
"outputs": [],
|
133 |
-
"source": [
|
134 |
-
"import wandb\n",
|
135 |
-
"run = wandb.init()\n",
|
136 |
-
"artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-1ef8yxby:latest', type='bart_model')\n",
|
137 |
-
"artifact_dir = artifact.download()"
|
138 |
-
]
|
139 |
-
},
|
140 |
-
{
|
141 |
-
"cell_type": "code",
|
142 |
-
"execution_count": null,
|
143 |
-
"metadata": {
|
144 |
-
"id": "_6-XKK40oEfP",
|
145 |
-
"scrolled": true
|
146 |
-
},
|
147 |
-
"outputs": [],
|
148 |
-
"source": [
|
149 |
-
"# create our model and initialize it randomly\n",
|
150 |
-
"model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)"
|
151 |
-
]
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"cell_type": "code",
|
155 |
-
"execution_count": null,
|
156 |
-
"metadata": {},
|
157 |
-
"outputs": [],
|
158 |
-
"source": [
|
159 |
-
"model.config.forced_bos_token_id = None"
|
160 |
-
]
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"cell_type": "code",
|
164 |
-
"execution_count": null,
|
165 |
-
"metadata": {
|
166 |
-
"colab": {
|
167 |
-
"base_uri": "https://localhost:8080/"
|
168 |
-
},
|
169 |
-
"id": "Jz032w73nHEf",
|
170 |
-
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49"
|
171 |
-
},
|
172 |
-
"outputs": [],
|
173 |
-
"source": [
|
174 |
-
"# we verify that the shape has not been modified\n",
|
175 |
-
"model.params['final_logits_bias'].shape"
|
176 |
-
]
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"cell_type": "markdown",
|
180 |
-
"metadata": {
|
181 |
-
"id": "zLl24Ez5t7x1"
|
182 |
-
},
|
183 |
-
"source": [
|
184 |
-
"## Inference"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": null,
|
190 |
-
"metadata": {
|
191 |
-
"id": "XLLA2NK3uDQr"
|
192 |
-
},
|
193 |
-
"outputs": [],
|
194 |
-
"source": [
|
195 |
-
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)"
|
196 |
-
]
|
197 |
-
},
|
198 |
-
{
|
199 |
-
"cell_type": "code",
|
200 |
-
"execution_count": null,
|
201 |
-
"metadata": {},
|
202 |
-
"outputs": [],
|
203 |
-
"source": [
|
204 |
-
"input_text = ['I enjoy walking with my cute dog']*8"
|
205 |
-
]
|
206 |
-
},
|
207 |
-
{
|
208 |
-
"cell_type": "code",
|
209 |
-
"execution_count": null,
|
210 |
-
"metadata": {
|
211 |
-
"id": "P32mJJSbrU1F"
|
212 |
-
},
|
213 |
-
"outputs": [],
|
214 |
-
"source": [
|
215 |
-
"input_ids_test = tokenizer(input_text, return_tensors='jax')"
|
216 |
-
]
|
217 |
-
},
|
218 |
-
{
|
219 |
-
"cell_type": "code",
|
220 |
-
"execution_count": null,
|
221 |
-
"metadata": {},
|
222 |
-
"outputs": [],
|
223 |
-
"source": [
|
224 |
-
"input_ids_test"
|
225 |
-
]
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"cell_type": "code",
|
229 |
-
"execution_count": null,
|
230 |
-
"metadata": {
|
231 |
-
"id": "C7cHbIHruELT"
|
232 |
-
},
|
233 |
-
"outputs": [],
|
234 |
-
"source": [
|
235 |
-
"greedy_output = model.generate(input_ids_test['input_ids'], max_length=257)"
|
236 |
-
]
|
237 |
-
},
|
238 |
-
{
|
239 |
-
"cell_type": "code",
|
240 |
-
"execution_count": null,
|
241 |
-
"metadata": {},
|
242 |
-
"outputs": [],
|
243 |
-
"source": [
|
244 |
-
"greedy_output[0].shape"
|
245 |
-
]
|
246 |
-
},
|
247 |
-
{
|
248 |
-
"cell_type": "code",
|
249 |
-
"execution_count": null,
|
250 |
-
"metadata": {
|
251 |
-
"colab": {
|
252 |
-
"base_uri": "https://localhost:8080/"
|
253 |
-
},
|
254 |
-
"id": "jYugh9cOuwc9",
|
255 |
-
"outputId": "19c3a2ee-e7bc-4f1f-9c86-06bd7337b537"
|
256 |
-
},
|
257 |
-
"outputs": [],
|
258 |
-
"source": [
|
259 |
-
"greedy_output[0]"
|
260 |
-
]
|
261 |
-
},
|
262 |
-
{
|
263 |
-
"cell_type": "code",
|
264 |
-
"execution_count": null,
|
265 |
-
"metadata": {},
|
266 |
-
"outputs": [],
|
267 |
-
"source": [
|
268 |
-
"greedy_output[0][0]"
|
269 |
-
]
|
270 |
-
},
|
271 |
-
{
|
272 |
-
"cell_type": "markdown",
|
273 |
-
"metadata": {},
|
274 |
-
"source": [
|
275 |
-
"# VGAN Jax"
|
276 |
-
]
|
277 |
-
},
|
278 |
-
{
|
279 |
-
"cell_type": "code",
|
280 |
-
"execution_count": null,
|
281 |
-
"metadata": {},
|
282 |
-
"outputs": [],
|
283 |
-
"source": [
|
284 |
-
"import io\n",
|
285 |
-
"\n",
|
286 |
-
"import requests\n",
|
287 |
-
"from PIL import Image\n",
|
288 |
-
"import numpy as np\n",
|
289 |
-
"\n",
|
290 |
-
"import torch\n",
|
291 |
-
"import torchvision.transforms as T\n",
|
292 |
-
"import torchvision.transforms.functional as TF\n",
|
293 |
-
"from torchvision.transforms import InterpolationMode"
|
294 |
-
]
|
295 |
-
},
|
296 |
-
{
|
297 |
-
"cell_type": "code",
|
298 |
-
"execution_count": null,
|
299 |
-
"metadata": {},
|
300 |
-
"outputs": [],
|
301 |
-
"source": [
|
302 |
-
"from modeling_flax_vqgan import VQModel"
|
303 |
-
]
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"cell_type": "code",
|
307 |
-
"execution_count": null,
|
308 |
-
"metadata": {},
|
309 |
-
"outputs": [],
|
310 |
-
"source": [
|
311 |
-
"def custom_to_pil(x):\n",
|
312 |
-
" x = np.clip(x, 0., 1.)\n",
|
313 |
-
" x = (255*x).astype(np.uint8)\n",
|
314 |
-
" x = Image.fromarray(x)\n",
|
315 |
-
" if not x.mode == \"RGB\":\n",
|
316 |
-
" x = x.convert(\"RGB\")\n",
|
317 |
-
" return x"
|
318 |
-
]
|
319 |
-
},
|
320 |
-
{
|
321 |
-
"cell_type": "code",
|
322 |
-
"execution_count": null,
|
323 |
-
"metadata": {
|
324 |
-
"colab": {
|
325 |
-
"base_uri": "https://localhost:8080/"
|
326 |
-
},
|
327 |
-
"id": "Jz032w73nHEf",
|
328 |
-
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49",
|
329 |
-
"scrolled": true
|
330 |
-
},
|
331 |
-
"outputs": [],
|
332 |
-
"source": [
|
333 |
-
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
334 |
-
]
|
335 |
-
},
|
336 |
-
{
|
337 |
-
"cell_type": "code",
|
338 |
-
"execution_count": null,
|
339 |
-
"metadata": {},
|
340 |
-
"outputs": [],
|
341 |
-
"source": [
|
342 |
-
"def get_images(indices, model):\n",
|
343 |
-
" indices = indices[:, 1:]\n",
|
344 |
-
" print(indices.shape)\n",
|
345 |
-
" img = model.decode_code(indices)\n",
|
346 |
-
" return img"
|
347 |
-
]
|
348 |
-
},
|
349 |
-
{
|
350 |
-
"cell_type": "code",
|
351 |
-
"execution_count": null,
|
352 |
-
"metadata": {},
|
353 |
-
"outputs": [],
|
354 |
-
"source": [
|
355 |
-
"custom_to_pil(np.asarray(get_images(jnp.expand_dims(greedy_output[0][0],0), model)[0]))"
|
356 |
-
]
|
357 |
-
}
|
358 |
-
],
|
359 |
-
"metadata": {
|
360 |
-
"accelerator": "TPU",
|
361 |
-
"colab": {
|
362 |
-
"collapsed_sections": [],
|
363 |
-
"machine_shape": "hm",
|
364 |
-
"name": "CustomBARTv4b-model-generate.ipynb",
|
365 |
-
"provenance": []
|
366 |
-
},
|
367 |
-
"kernelspec": {
|
368 |
-
"display_name": "Python 3 (ipykernel)",
|
369 |
-
"language": "python",
|
370 |
-
"name": "python3"
|
371 |
-
},
|
372 |
-
"language_info": {
|
373 |
-
"codemirror_mode": {
|
374 |
-
"name": "ipython",
|
375 |
-
"version": 3
|
376 |
-
},
|
377 |
-
"file_extension": ".py",
|
378 |
-
"mimetype": "text/x-python",
|
379 |
-
"name": "python",
|
380 |
-
"nbconvert_exporter": "python",
|
381 |
-
"pygments_lexer": "ipython3",
|
382 |
-
"version": "3.8.5"
|
383 |
-
}
|
384 |
-
},
|
385 |
-
"nbformat": 4,
|
386 |
-
"nbformat_minor": 4
|
387 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/model-sweep.py
DELETED
@@ -1,220 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
import random
|
5 |
-
|
6 |
-
import jax
|
7 |
-
import flax.linen as nn
|
8 |
-
from flax.training.common_utils import shard
|
9 |
-
from flax.jax_utils import replicate, unreplicate
|
10 |
-
|
11 |
-
from transformers.models.bart.modeling_flax_bart import *
|
12 |
-
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
13 |
-
|
14 |
-
import io
|
15 |
-
|
16 |
-
import requests
|
17 |
-
from PIL import Image
|
18 |
-
import numpy as np
|
19 |
-
import matplotlib.pyplot as plt
|
20 |
-
|
21 |
-
import torch
|
22 |
-
import torchvision.transforms as T
|
23 |
-
import torchvision.transforms.functional as TF
|
24 |
-
from torchvision.transforms import InterpolationMode
|
25 |
-
|
26 |
-
from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel
|
27 |
-
|
28 |
-
# TODO: set those args in a config file
|
29 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
30 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
31 |
-
BOS_TOKEN_ID = 16384
|
32 |
-
BASE_MODEL = 'facebook/bart-large-cnn'
|
33 |
-
WANDB_MODEL = '3iwhu4w6'
|
34 |
-
|
35 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
36 |
-
def setup(self):
|
37 |
-
# we keep shared to easily load pre-trained weights
|
38 |
-
self.shared = nn.Embed(
|
39 |
-
self.config.vocab_size,
|
40 |
-
self.config.d_model,
|
41 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
42 |
-
dtype=self.dtype,
|
43 |
-
)
|
44 |
-
# a separate embedding is used for the decoder
|
45 |
-
self.decoder_embed = nn.Embed(
|
46 |
-
OUTPUT_VOCAB_SIZE,
|
47 |
-
self.config.d_model,
|
48 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
49 |
-
dtype=self.dtype,
|
50 |
-
)
|
51 |
-
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
52 |
-
|
53 |
-
# the decoder has a different config
|
54 |
-
decoder_config = BartConfig(self.config.to_dict())
|
55 |
-
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
56 |
-
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
57 |
-
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
58 |
-
|
59 |
-
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
60 |
-
def setup(self):
|
61 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
62 |
-
self.lm_head = nn.Dense(
|
63 |
-
OUTPUT_VOCAB_SIZE,
|
64 |
-
use_bias=False,
|
65 |
-
dtype=self.dtype,
|
66 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
67 |
-
)
|
68 |
-
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
69 |
-
|
70 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
71 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
72 |
-
|
73 |
-
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
74 |
-
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
75 |
-
|
76 |
-
def custom_to_pil(x):
|
77 |
-
x = np.clip(x, 0., 1.)
|
78 |
-
x = (255*x).astype(np.uint8)
|
79 |
-
x = Image.fromarray(x)
|
80 |
-
if not x.mode == "RGB":
|
81 |
-
x = x.convert("RGB")
|
82 |
-
return x
|
83 |
-
|
84 |
-
def generate(input, rng, params):
|
85 |
-
return model.generate(
|
86 |
-
**input,
|
87 |
-
max_length=257,
|
88 |
-
num_beams=1,
|
89 |
-
do_sample=True,
|
90 |
-
prng_key=rng,
|
91 |
-
eos_token_id=50000,
|
92 |
-
pad_token_id=50000,
|
93 |
-
params=params,
|
94 |
-
)
|
95 |
-
|
96 |
-
def get_images(indices, params):
|
97 |
-
return vqgan.decode_code(indices, params=params)
|
98 |
-
|
99 |
-
def plot_images(images):
|
100 |
-
fig = plt.figure(figsize=(40, 20))
|
101 |
-
columns = 4
|
102 |
-
rows = 2
|
103 |
-
plt.subplots_adjust(hspace=0, wspace=0)
|
104 |
-
|
105 |
-
for i in range(1, columns*rows +1):
|
106 |
-
fig.add_subplot(rows, columns, i)
|
107 |
-
plt.imshow(images[i-1])
|
108 |
-
plt.gca().axes.get_yaxis().set_visible(False)
|
109 |
-
plt.show()
|
110 |
-
|
111 |
-
def stack_reconstructions(images):
|
112 |
-
w, h = images[0].size[0], images[0].size[1]
|
113 |
-
img = Image.new("RGB", (len(images)*w, h))
|
114 |
-
for i, img_ in enumerate(images):
|
115 |
-
img.paste(img_, (i*w,0))
|
116 |
-
return img
|
117 |
-
|
118 |
-
p_generate = jax.pmap(generate, "batch")
|
119 |
-
p_get_images = jax.pmap(get_images, "batch")
|
120 |
-
|
121 |
-
# ## CLIP Scoring
|
122 |
-
from transformers import CLIPProcessor, FlaxCLIPModel
|
123 |
-
|
124 |
-
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
125 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
126 |
-
|
127 |
-
def hallucinate(prompt, num_images=64):
|
128 |
-
prompt = [prompt] * jax.device_count()
|
129 |
-
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
|
130 |
-
inputs = shard(inputs)
|
131 |
-
|
132 |
-
all_images = []
|
133 |
-
for i in range(num_images // jax.device_count()):
|
134 |
-
key = random.randint(0, 1e7)
|
135 |
-
rng = jax.random.PRNGKey(key)
|
136 |
-
rngs = jax.random.split(rng, jax.local_device_count())
|
137 |
-
indices = p_generate(inputs, rngs, bart_params).sequences
|
138 |
-
indices = indices[:, :, 1:]
|
139 |
-
|
140 |
-
images = p_get_images(indices, vqgan_params)
|
141 |
-
images = np.squeeze(np.asarray(images), 1)
|
142 |
-
for image in images:
|
143 |
-
all_images.append(custom_to_pil(image))
|
144 |
-
return all_images
|
145 |
-
|
146 |
-
def clip_top_k(prompt, images, k=8):
|
147 |
-
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
148 |
-
outputs = clip(**inputs)
|
149 |
-
logits = outputs.logits_per_text
|
150 |
-
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
151 |
-
return [images[score] for score in scores]
|
152 |
-
|
153 |
-
from PIL import ImageDraw, ImageFont
|
154 |
-
|
155 |
-
def captioned_strip(images, caption):
|
156 |
-
w, h = images[0].size[0], images[0].size[1]
|
157 |
-
img = Image.new("RGB", (len(images)*w, h + 48))
|
158 |
-
for i, img_ in enumerate(images):
|
159 |
-
img.paste(img_, (i*w, 48))
|
160 |
-
draw = ImageDraw.Draw(img)
|
161 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
162 |
-
draw.text((20, 3), caption, (255,255,255), font=font)
|
163 |
-
return img
|
164 |
-
|
165 |
-
def log_to_wandb(prompts):
|
166 |
-
strips = []
|
167 |
-
for prompt in prompts:
|
168 |
-
print(f"Generating candidates for: {prompt}")
|
169 |
-
images = hallucinate(prompt, num_images=32)
|
170 |
-
selected = clip_top_k(prompt, images, k=8)
|
171 |
-
strip = captioned_strip(selected, prompt)
|
172 |
-
strips.append(wandb.Image(strip))
|
173 |
-
wandb.log({"images": strips})
|
174 |
-
|
175 |
-
## Artifact loop
|
176 |
-
|
177 |
-
import wandb
|
178 |
-
import os
|
179 |
-
os.environ["WANDB_SILENT"] = "true"
|
180 |
-
os.environ["WANDB_CONSOLE"] = "off"
|
181 |
-
|
182 |
-
id = wandb.util.generate_id()
|
183 |
-
print(f"Logging images to wandb run id: {id}")
|
184 |
-
|
185 |
-
run = wandb.init(id=id,
|
186 |
-
entity='wandb',
|
187 |
-
project="hf-flax-dalle-mini",
|
188 |
-
job_type="predictions",
|
189 |
-
resume="allow"
|
190 |
-
)
|
191 |
-
|
192 |
-
artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-3iwhu4w6:v0', type='bart_model')
|
193 |
-
producer_run = artifact.logged_by()
|
194 |
-
logged_artifacts = producer_run.logged_artifacts()
|
195 |
-
|
196 |
-
for artifact in logged_artifacts:
|
197 |
-
print(f"Generating predictions with version {artifact.version}")
|
198 |
-
artifact_dir = artifact.download()
|
199 |
-
|
200 |
-
# create our model
|
201 |
-
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
202 |
-
model.config.force_bos_token_to_be_generated = False
|
203 |
-
model.config.forced_bos_token_id = None
|
204 |
-
model.config.forced_eos_token_id = None
|
205 |
-
|
206 |
-
bart_params = replicate(model.params)
|
207 |
-
vqgan_params = replicate(vqgan.params)
|
208 |
-
|
209 |
-
prompts = prompts = [
|
210 |
-
"white snow covered mountain under blue sky during daytime",
|
211 |
-
"aerial view of beach during daytime",
|
212 |
-
"aerial view of beach at night",
|
213 |
-
"an armchair in the shape of an avocado",
|
214 |
-
"young woman riding her bike trough a forest",
|
215 |
-
"rice fields by the mediterranean coast",
|
216 |
-
"white houses on the hill of a greek coastline",
|
217 |
-
"illustration of a shark with a baby shark",
|
218 |
-
]
|
219 |
-
|
220 |
-
log_to_wandb(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/demo/tpu-demo.ipynb
DELETED
@@ -1,455 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "f6d33374",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"# Test notebook with CLIP scoring"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": null,
|
14 |
-
"id": "6eb74941-bb4d-4d7e-97f1-d5a3a07672bf",
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": [
|
18 |
-
"# !pip install flax transformers\n",
|
19 |
-
"# !git clone https://github.com/patil-suraj/vqgan-jax.git"
|
20 |
-
]
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"cell_type": "code",
|
24 |
-
"execution_count": null,
|
25 |
-
"id": "41db7534-f589-4b63-9165-9c9799e1b06e",
|
26 |
-
"metadata": {},
|
27 |
-
"outputs": [],
|
28 |
-
"source": [
|
29 |
-
"import random\n",
|
30 |
-
"\n",
|
31 |
-
"import jax\n",
|
32 |
-
"import flax.linen as nn\n",
|
33 |
-
"from flax.training.common_utils import shard\n",
|
34 |
-
"from flax.jax_utils import replicate, unreplicate\n",
|
35 |
-
"\n",
|
36 |
-
"from transformers.models.bart.modeling_flax_bart import *\n",
|
37 |
-
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
38 |
-
"\n",
|
39 |
-
"import io\n",
|
40 |
-
"\n",
|
41 |
-
"import requests\n",
|
42 |
-
"from PIL import Image\n",
|
43 |
-
"import numpy as np\n",
|
44 |
-
"import matplotlib.pyplot as plt\n",
|
45 |
-
"\n",
|
46 |
-
"import torch\n",
|
47 |
-
"import torchvision.transforms as T\n",
|
48 |
-
"import torchvision.transforms.functional as TF\n",
|
49 |
-
"from torchvision.transforms import InterpolationMode\n",
|
50 |
-
"\n",
|
51 |
-
"jax.devices()"
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "markdown",
|
56 |
-
"id": "d408065c",
|
57 |
-
"metadata": {},
|
58 |
-
"source": [
|
59 |
-
"`dalle_mini` is a local package that contains the VQGAN-JAX model by Suraj, and other utilities. You can also `cd` to the directory that contains your checkout of [`vqgan-jax`](https://github.com/patil-suraj/vqgan-jax.git)"
|
60 |
-
]
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"cell_type": "code",
|
64 |
-
"execution_count": null,
|
65 |
-
"id": "09295910",
|
66 |
-
"metadata": {},
|
67 |
-
"outputs": [],
|
68 |
-
"source": [
|
69 |
-
"from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel\n",
|
70 |
-
"#%cd /content/vqgan-jax"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "code",
|
75 |
-
"execution_count": null,
|
76 |
-
"id": "b6a3462a-9004-4121-b365-3ae3aaf94dd2",
|
77 |
-
"metadata": {},
|
78 |
-
"outputs": [],
|
79 |
-
"source": [
|
80 |
-
"# TODO: set those args in a config file\n",
|
81 |
-
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
82 |
-
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
83 |
-
"BOS_TOKEN_ID = 16384\n",
|
84 |
-
"BASE_MODEL = 'facebook/bart-large-cnn'"
|
85 |
-
]
|
86 |
-
},
|
87 |
-
{
|
88 |
-
"cell_type": "code",
|
89 |
-
"execution_count": null,
|
90 |
-
"id": "bbef1afb-0b36-44a5-83f7-643d7e2c0e30",
|
91 |
-
"metadata": {},
|
92 |
-
"outputs": [],
|
93 |
-
"source": [
|
94 |
-
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
95 |
-
" def setup(self):\n",
|
96 |
-
" # we keep shared to easily load pre-trained weights\n",
|
97 |
-
" self.shared = nn.Embed(\n",
|
98 |
-
" self.config.vocab_size,\n",
|
99 |
-
" self.config.d_model,\n",
|
100 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
101 |
-
" dtype=self.dtype,\n",
|
102 |
-
" )\n",
|
103 |
-
" # a separate embedding is used for the decoder\n",
|
104 |
-
" self.decoder_embed = nn.Embed(\n",
|
105 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
106 |
-
" self.config.d_model,\n",
|
107 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
108 |
-
" dtype=self.dtype,\n",
|
109 |
-
" )\n",
|
110 |
-
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
111 |
-
"\n",
|
112 |
-
" # the decoder has a different config\n",
|
113 |
-
" decoder_config = BartConfig(self.config.to_dict())\n",
|
114 |
-
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
115 |
-
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
116 |
-
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
117 |
-
"\n",
|
118 |
-
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
119 |
-
" def setup(self):\n",
|
120 |
-
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
121 |
-
" self.lm_head = nn.Dense(\n",
|
122 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
123 |
-
" use_bias=False,\n",
|
124 |
-
" dtype=self.dtype,\n",
|
125 |
-
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
126 |
-
" )\n",
|
127 |
-
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
128 |
-
"\n",
|
129 |
-
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
130 |
-
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
131 |
-
]
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"cell_type": "code",
|
135 |
-
"execution_count": null,
|
136 |
-
"id": "879320b7-eaa0-4dc9-bbf2-c81efc53301d",
|
137 |
-
"metadata": {},
|
138 |
-
"outputs": [],
|
139 |
-
"source": [
|
140 |
-
"import wandb\n",
|
141 |
-
"run = wandb.init()\n",
|
142 |
-
"artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-3h3x3565:latest', type='bart_model')\n",
|
143 |
-
"artifact_dir = artifact.download()"
|
144 |
-
]
|
145 |
-
},
|
146 |
-
{
|
147 |
-
"cell_type": "code",
|
148 |
-
"execution_count": null,
|
149 |
-
"id": "e8bcff33-e95b-4c01-b162-ee857a55c3e6",
|
150 |
-
"metadata": {},
|
151 |
-
"outputs": [],
|
152 |
-
"source": [
|
153 |
-
"# create our model\n",
|
154 |
-
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)\n",
|
155 |
-
"model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)\n",
|
156 |
-
"model.config.force_bos_token_to_be_generated = False\n",
|
157 |
-
"model.config.forced_bos_token_id = None\n",
|
158 |
-
"model.config.forced_eos_token_id = None\n",
|
159 |
-
"\n",
|
160 |
-
"# we verify that the shape has not been modified\n",
|
161 |
-
"model.params['final_logits_bias'].shape"
|
162 |
-
]
|
163 |
-
},
|
164 |
-
{
|
165 |
-
"cell_type": "code",
|
166 |
-
"execution_count": null,
|
167 |
-
"id": "8d5e0f14-2502-470e-9553-daee6748601f",
|
168 |
-
"metadata": {},
|
169 |
-
"outputs": [],
|
170 |
-
"source": [
|
171 |
-
"vqgan = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
172 |
-
]
|
173 |
-
},
|
174 |
-
{
|
175 |
-
"cell_type": "code",
|
176 |
-
"execution_count": null,
|
177 |
-
"id": "6cca395a-93c2-49bc-a3be-98287e4403d4",
|
178 |
-
"metadata": {},
|
179 |
-
"outputs": [],
|
180 |
-
"source": [
|
181 |
-
"def custom_to_pil(x):\n",
|
182 |
-
" x = np.clip(x, 0., 1.)\n",
|
183 |
-
" x = (255*x).astype(np.uint8)\n",
|
184 |
-
" x = Image.fromarray(x)\n",
|
185 |
-
" if not x.mode == \"RGB\":\n",
|
186 |
-
" x = x.convert(\"RGB\")\n",
|
187 |
-
" return x\n",
|
188 |
-
"\n",
|
189 |
-
"def generate(input, rng, params):\n",
|
190 |
-
" return model.generate(\n",
|
191 |
-
" **input,\n",
|
192 |
-
" max_length=257,\n",
|
193 |
-
" num_beams=1,\n",
|
194 |
-
" do_sample=True,\n",
|
195 |
-
" prng_key=rng,\n",
|
196 |
-
" eos_token_id=50000,\n",
|
197 |
-
" pad_token_id=50000,\n",
|
198 |
-
" params=params\n",
|
199 |
-
" )\n",
|
200 |
-
"\n",
|
201 |
-
"def get_images(indices, params):\n",
|
202 |
-
" return vqgan.decode_code(indices, params=params)\n",
|
203 |
-
"\n",
|
204 |
-
"\n",
|
205 |
-
"def plot_images(images):\n",
|
206 |
-
" fig = plt.figure(figsize=(40, 20))\n",
|
207 |
-
" columns = 4\n",
|
208 |
-
" rows = 2\n",
|
209 |
-
" plt.subplots_adjust(hspace=0, wspace=0)\n",
|
210 |
-
"\n",
|
211 |
-
" for i in range(1, columns*rows +1):\n",
|
212 |
-
" fig.add_subplot(rows, columns, i)\n",
|
213 |
-
" plt.imshow(images[i-1])\n",
|
214 |
-
" plt.gca().axes.get_yaxis().set_visible(False)\n",
|
215 |
-
" plt.show()\n",
|
216 |
-
" \n",
|
217 |
-
"def stack_reconstructions(images):\n",
|
218 |
-
" w, h = images[0].size[0], images[0].size[1]\n",
|
219 |
-
" img = Image.new(\"RGB\", (len(images)*w, h))\n",
|
220 |
-
" for i, img_ in enumerate(images):\n",
|
221 |
-
" img.paste(img_, (i*w,0))\n",
|
222 |
-
" return img"
|
223 |
-
]
|
224 |
-
},
|
225 |
-
{
|
226 |
-
"cell_type": "code",
|
227 |
-
"execution_count": null,
|
228 |
-
"id": "b1bec3d2-ef17-4feb-aa0d-b51ed2fdcd3e",
|
229 |
-
"metadata": {},
|
230 |
-
"outputs": [],
|
231 |
-
"source": [
|
232 |
-
"p_generate = jax.pmap(generate, \"batch\")\n",
|
233 |
-
"p_get_images = jax.pmap(get_images, \"batch\")"
|
234 |
-
]
|
235 |
-
},
|
236 |
-
{
|
237 |
-
"cell_type": "code",
|
238 |
-
"execution_count": null,
|
239 |
-
"id": "a539823a-a775-4d92-96a5-dc8b1eef69c5",
|
240 |
-
"metadata": {},
|
241 |
-
"outputs": [],
|
242 |
-
"source": [
|
243 |
-
"bart_params = replicate(model.params)\n",
|
244 |
-
"vqgan_params = replicate(vqgan.params)"
|
245 |
-
]
|
246 |
-
},
|
247 |
-
{
|
248 |
-
"cell_type": "code",
|
249 |
-
"execution_count": null,
|
250 |
-
"id": "e8b268d8-6992-422a-8373-95651474ae70",
|
251 |
-
"metadata": {},
|
252 |
-
"outputs": [],
|
253 |
-
"source": [
|
254 |
-
"prompts = [\n",
|
255 |
-
" \"man in blue jacket walking on pathway in between trees during daytime\",\n",
|
256 |
-
" 'white snow covered mountain under blue sky during daytime',\n",
|
257 |
-
" 'white snow covered mountain under blue sky during night',\n",
|
258 |
-
" \"orange tabby cat on persons hand\",\n",
|
259 |
-
" \"aerial view of beach during daytime\",\n",
|
260 |
-
" \"chess pieces on chess board\",\n",
|
261 |
-
" \"laptop on brown wooden table\",\n",
|
262 |
-
" \"white bus on road near high rise buildings\",\n",
|
263 |
-
"]\n",
|
264 |
-
"\n",
|
265 |
-
"\n",
|
266 |
-
"prompt = [prompts[1]] * jax.device_count()\n",
|
267 |
-
"inputs = tokenizer(prompt, return_tensors='jax', padding=\"max_length\", truncation=True, max_length=128).data\n",
|
268 |
-
"inputs = shard(inputs)"
|
269 |
-
]
|
270 |
-
},
|
271 |
-
{
|
272 |
-
"cell_type": "code",
|
273 |
-
"execution_count": null,
|
274 |
-
"id": "68638cfa-9a4d-4e6a-8630-91aefb627bbd",
|
275 |
-
"metadata": {},
|
276 |
-
"outputs": [],
|
277 |
-
"source": [
|
278 |
-
"%%time\n",
|
279 |
-
"for i in range(8):\n",
|
280 |
-
" key = random.randint(0, 1e7)\n",
|
281 |
-
" rng = jax.random.PRNGKey(key)\n",
|
282 |
-
" rngs = jax.random.split(rng, jax.local_device_count())\n",
|
283 |
-
" indices = p_generate(inputs, rngs, bart_params).sequences\n",
|
284 |
-
" indices = indices[:, :, 1:]\n",
|
285 |
-
"\n",
|
286 |
-
" images = p_get_images(indices, vqgan_params)\n",
|
287 |
-
" images = np.squeeze(np.asarray(images), 1)\n",
|
288 |
-
" imges = [custom_to_pil(image) for image in images]\n",
|
289 |
-
"\n",
|
290 |
-
" plt.figure(figsize=(40, 20))\n",
|
291 |
-
" plt.imshow(stack_reconstructions(imges))"
|
292 |
-
]
|
293 |
-
},
|
294 |
-
{
|
295 |
-
"cell_type": "markdown",
|
296 |
-
"id": "b6e1060f",
|
297 |
-
"metadata": {},
|
298 |
-
"source": [
|
299 |
-
"## CLIP Scoring"
|
300 |
-
]
|
301 |
-
},
|
302 |
-
{
|
303 |
-
"cell_type": "code",
|
304 |
-
"execution_count": null,
|
305 |
-
"id": "c68724bc",
|
306 |
-
"metadata": {},
|
307 |
-
"outputs": [],
|
308 |
-
"source": [
|
309 |
-
"from transformers import CLIPProcessor, FlaxCLIPModel"
|
310 |
-
]
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"cell_type": "code",
|
314 |
-
"execution_count": null,
|
315 |
-
"id": "17158e5b",
|
316 |
-
"metadata": {},
|
317 |
-
"outputs": [],
|
318 |
-
"source": [
|
319 |
-
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
320 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")"
|
321 |
-
]
|
322 |
-
},
|
323 |
-
{
|
324 |
-
"cell_type": "code",
|
325 |
-
"execution_count": null,
|
326 |
-
"id": "f1b37b6d",
|
327 |
-
"metadata": {},
|
328 |
-
"outputs": [],
|
329 |
-
"source": [
|
330 |
-
"def hallucinate(prompt, num_images=64):\n",
|
331 |
-
" prompt = [prompt] * jax.device_count()\n",
|
332 |
-
" inputs = tokenizer(prompt, return_tensors='jax', padding=\"max_length\", truncation=True, max_length=128).data\n",
|
333 |
-
" inputs = shard(inputs)\n",
|
334 |
-
"\n",
|
335 |
-
" all_images = []\n",
|
336 |
-
" for i in range(num_images // jax.device_count()):\n",
|
337 |
-
" key = random.randint(0, 1e7)\n",
|
338 |
-
" rng = jax.random.PRNGKey(key)\n",
|
339 |
-
" rngs = jax.random.split(rng, jax.local_device_count())\n",
|
340 |
-
" indices = p_generate(inputs, rngs, bart_params).sequences\n",
|
341 |
-
" indices = indices[:, :, 1:]\n",
|
342 |
-
"\n",
|
343 |
-
" images = p_get_images(indices, vqgan_params)\n",
|
344 |
-
" images = np.squeeze(np.asarray(images), 1)\n",
|
345 |
-
" for image in images:\n",
|
346 |
-
" all_images.append(custom_to_pil(image))\n",
|
347 |
-
" return all_images"
|
348 |
-
]
|
349 |
-
},
|
350 |
-
{
|
351 |
-
"cell_type": "code",
|
352 |
-
"execution_count": null,
|
353 |
-
"id": "831c715f",
|
354 |
-
"metadata": {},
|
355 |
-
"outputs": [],
|
356 |
-
"source": [
|
357 |
-
"def clip_top_k(prompt, images, k=8):\n",
|
358 |
-
" inputs = processor(text=prompt, images=images, return_tensors=\"np\", padding=True)\n",
|
359 |
-
" outputs = clip(**inputs)\n",
|
360 |
-
" logits = outputs.logits_per_text\n",
|
361 |
-
" scores = np.array(logits[0]).argsort()[-k:][::-1]\n",
|
362 |
-
" return [images[score] for score in scores]"
|
363 |
-
]
|
364 |
-
},
|
365 |
-
{
|
366 |
-
"cell_type": "code",
|
367 |
-
"execution_count": null,
|
368 |
-
"id": "00605e13",
|
369 |
-
"metadata": {},
|
370 |
-
"outputs": [],
|
371 |
-
"source": [
|
372 |
-
"prompt = \"white snow covered mountain under blue sky during daytime\"\n",
|
373 |
-
"images = hallucinate(prompt)\n",
|
374 |
-
"selected = clip_top_k(prompt, images, k=8)\n",
|
375 |
-
"stack_reconstructions(selected)"
|
376 |
-
]
|
377 |
-
},
|
378 |
-
{
|
379 |
-
"cell_type": "code",
|
380 |
-
"execution_count": null,
|
381 |
-
"id": "cc745da2",
|
382 |
-
"metadata": {},
|
383 |
-
"outputs": [],
|
384 |
-
"source": [
|
385 |
-
"prompt = \"aerial view of beach at night\"\n",
|
386 |
-
"images = hallucinate(prompt)\n",
|
387 |
-
"selected = clip_top_k(prompt, images, k=8)\n",
|
388 |
-
"stack_reconstructions(selected)"
|
389 |
-
]
|
390 |
-
},
|
391 |
-
{
|
392 |
-
"cell_type": "code",
|
393 |
-
"execution_count": null,
|
394 |
-
"id": "c9cc0b1d",
|
395 |
-
"metadata": {},
|
396 |
-
"outputs": [],
|
397 |
-
"source": [
|
398 |
-
"prompt = \"an armchair in the shape of an avocado\"\n",
|
399 |
-
"images = hallucinate(prompt)\n",
|
400 |
-
"selected = clip_top_k(prompt, images, k=8)\n",
|
401 |
-
"stack_reconstructions(selected)"
|
402 |
-
]
|
403 |
-
},
|
404 |
-
{
|
405 |
-
"cell_type": "code",
|
406 |
-
"execution_count": null,
|
407 |
-
"id": "574e9433",
|
408 |
-
"metadata": {},
|
409 |
-
"outputs": [],
|
410 |
-
"source": [
|
411 |
-
"prompt = \"young woman riding her bike into a forest\"\n",
|
412 |
-
"images = hallucinate(prompt)\n",
|
413 |
-
"selected = clip_top_k(prompt, images, k=8)\n",
|
414 |
-
"stack_reconstructions(selected)"
|
415 |
-
]
|
416 |
-
},
|
417 |
-
{
|
418 |
-
"cell_type": "markdown",
|
419 |
-
"id": "4762c91e",
|
420 |
-
"metadata": {},
|
421 |
-
"source": [
|
422 |
-
"`Forest` seems to dominate. Interesting cubist interpretation in the fourth image."
|
423 |
-
]
|
424 |
-
},
|
425 |
-
{
|
426 |
-
"cell_type": "code",
|
427 |
-
"execution_count": null,
|
428 |
-
"id": "af30608a",
|
429 |
-
"metadata": {},
|
430 |
-
"outputs": [],
|
431 |
-
"source": []
|
432 |
-
}
|
433 |
-
],
|
434 |
-
"metadata": {
|
435 |
-
"kernelspec": {
|
436 |
-
"display_name": "Python 3 (ipykernel)",
|
437 |
-
"language": "python",
|
438 |
-
"name": "python3"
|
439 |
-
},
|
440 |
-
"language_info": {
|
441 |
-
"codemirror_mode": {
|
442 |
-
"name": "ipython",
|
443 |
-
"version": 3
|
444 |
-
},
|
445 |
-
"file_extension": ".py",
|
446 |
-
"mimetype": "text/x-python",
|
447 |
-
"name": "python",
|
448 |
-
"nbconvert_exporter": "python",
|
449 |
-
"pygments_lexer": "ipython3",
|
450 |
-
"version": "3.8.5"
|
451 |
-
}
|
452 |
-
},
|
453 |
-
"nbformat": 4,
|
454 |
-
"nbformat_minor": 5
|
455 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/notebooks/model/data-pipeline.ipynb
DELETED
@@ -1,385 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "bf8fb38a",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"# Data Pipeline"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "code",
|
13 |
-
"execution_count": 1,
|
14 |
-
"id": "9b83dcb9",
|
15 |
-
"metadata": {},
|
16 |
-
"outputs": [],
|
17 |
-
"source": [
|
18 |
-
"from dataclasses import dataclass, field\n",
|
19 |
-
"from pathlib import Path\n",
|
20 |
-
"\n",
|
21 |
-
"import datasets\n",
|
22 |
-
"from datasets import Dataset, load_dataset\n",
|
23 |
-
"import numpy as np\n",
|
24 |
-
"\n",
|
25 |
-
"from transformers import BartTokenizer\n",
|
26 |
-
"\n",
|
27 |
-
"from tqdm import tqdm\n",
|
28 |
-
"\n",
|
29 |
-
"import jax\n",
|
30 |
-
"import jax.numpy as jnp\n",
|
31 |
-
"\n",
|
32 |
-
"from flax.training.common_utils import shard"
|
33 |
-
]
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"cell_type": "markdown",
|
37 |
-
"id": "a661a89e",
|
38 |
-
"metadata": {},
|
39 |
-
"source": [
|
40 |
-
"File containing image paths, captions and VQGAN-encoded indices."
|
41 |
-
]
|
42 |
-
},
|
43 |
-
{
|
44 |
-
"cell_type": "code",
|
45 |
-
"execution_count": 2,
|
46 |
-
"id": "0e84e889",
|
47 |
-
"metadata": {},
|
48 |
-
"outputs": [],
|
49 |
-
"source": [
|
50 |
-
"datafile = '/data/CC12M/images-encoded-10000.tsv' # 9999 encoded images from CC12M"
|
51 |
-
]
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"cell_type": "markdown",
|
55 |
-
"id": "7fdc640b",
|
56 |
-
"metadata": {},
|
57 |
-
"source": [
|
58 |
-
"TODO: generate train/test splits if necessary."
|
59 |
-
]
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"cell_type": "code",
|
63 |
-
"execution_count": 3,
|
64 |
-
"id": "cc6789b4",
|
65 |
-
"metadata": {},
|
66 |
-
"outputs": [
|
67 |
-
{
|
68 |
-
"name": "stderr",
|
69 |
-
"output_type": "stream",
|
70 |
-
"text": [
|
71 |
-
"Using custom data configuration default-91833df78e844785\n",
|
72 |
-
"Reusing dataset csv (/home/pedro/.cache/huggingface/datasets/csv/default-91833df78e844785/0.0.0/e138af468cb14e747fb46a19c787ffcfa5170c821476d20d5304287ce12bbc23)\n"
|
73 |
-
]
|
74 |
-
}
|
75 |
-
],
|
76 |
-
"source": [
|
77 |
-
"dataset = load_dataset('csv', delimiter='\\t', data_files=[datafile])"
|
78 |
-
]
|
79 |
-
},
|
80 |
-
{
|
81 |
-
"cell_type": "code",
|
82 |
-
"execution_count": 4,
|
83 |
-
"id": "f3ed4919",
|
84 |
-
"metadata": {},
|
85 |
-
"outputs": [
|
86 |
-
{
|
87 |
-
"data": {
|
88 |
-
"text/plain": [
|
89 |
-
"DatasetDict({\n",
|
90 |
-
" train: Dataset({\n",
|
91 |
-
" features: ['image_file', 'caption', 'encoding'],\n",
|
92 |
-
" num_rows: 9999\n",
|
93 |
-
" })\n",
|
94 |
-
"})"
|
95 |
-
]
|
96 |
-
},
|
97 |
-
"execution_count": 4,
|
98 |
-
"metadata": {},
|
99 |
-
"output_type": "execute_result"
|
100 |
-
}
|
101 |
-
],
|
102 |
-
"source": [
|
103 |
-
"dataset"
|
104 |
-
]
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"cell_type": "code",
|
108 |
-
"execution_count": 5,
|
109 |
-
"id": "a70c7354",
|
110 |
-
"metadata": {},
|
111 |
-
"outputs": [
|
112 |
-
{
|
113 |
-
"data": {
|
114 |
-
"text/plain": [
|
115 |
-
"Dataset({\n",
|
116 |
-
" features: ['image_file', 'caption', 'encoding'],\n",
|
117 |
-
" num_rows: 9999\n",
|
118 |
-
"})"
|
119 |
-
]
|
120 |
-
},
|
121 |
-
"execution_count": 5,
|
122 |
-
"metadata": {},
|
123 |
-
"output_type": "execute_result"
|
124 |
-
}
|
125 |
-
],
|
126 |
-
"source": [
|
127 |
-
"dataset = dataset[\"train\"]\n",
|
128 |
-
"dataset"
|
129 |
-
]
|
130 |
-
},
|
131 |
-
{
|
132 |
-
"cell_type": "markdown",
|
133 |
-
"id": "a73454cf",
|
134 |
-
"metadata": {},
|
135 |
-
"source": [
|
136 |
-
"We don't really need the `image_file` field for training. We'll drop it during pre-processing because we won't be able to numericalize it to a `jnp.array`, which would be required in JAX."
|
137 |
-
]
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"cell_type": "markdown",
|
141 |
-
"id": "7c0fa992",
|
142 |
-
"metadata": {},
|
143 |
-
"source": [
|
144 |
-
"## Preprocessing"
|
145 |
-
]
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"cell_type": "markdown",
|
149 |
-
"id": "a0e36582",
|
150 |
-
"metadata": {},
|
151 |
-
"source": [
|
152 |
-
"The `encoding` field contains a string representation of the encoded indices. We'll convert them to numbers. We also need to tokenize the captions."
|
153 |
-
]
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"cell_type": "code",
|
157 |
-
"execution_count": 6,
|
158 |
-
"id": "d46f6ac5",
|
159 |
-
"metadata": {},
|
160 |
-
"outputs": [],
|
161 |
-
"source": [
|
162 |
-
"# Setting padding=\"max_length\" as we need fixed length inputs for jitted functions\n",
|
163 |
-
"max_length = 256 # Read from data_args.max_source_length\n",
|
164 |
-
"tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')\n",
|
165 |
-
"image_bos = 16384 # Max token is 16383 in our VQGAN configuration"
|
166 |
-
]
|
167 |
-
},
|
168 |
-
{
|
169 |
-
"cell_type": "code",
|
170 |
-
"execution_count": 7,
|
171 |
-
"id": "4cac6643",
|
172 |
-
"metadata": {},
|
173 |
-
"outputs": [],
|
174 |
-
"source": [
|
175 |
-
"def preprocess_function(examples):\n",
|
176 |
-
" inputs = examples[\"caption\"]\n",
|
177 |
-
"# inputs = [prefix + inp for inp in inputs] # Do we need this?\n",
|
178 |
-
" model_inputs = tokenizer(\n",
|
179 |
-
" inputs, max_length=max_length, padding=\"max_length\", truncation=True, return_tensors=\"np\"\n",
|
180 |
-
" )\n",
|
181 |
-
"\n",
|
182 |
-
" model_inputs[\"labels\"] = [[image_bos] + eval(indices) for indices in examples['encoding']]\n",
|
183 |
-
"\n",
|
184 |
-
" return model_inputs"
|
185 |
-
]
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"cell_type": "code",
|
189 |
-
"execution_count": 8,
|
190 |
-
"id": "e6a4cb91",
|
191 |
-
"metadata": {},
|
192 |
-
"outputs": [],
|
193 |
-
"source": [
|
194 |
-
"num_workers = 48 # We have 96 processors in the TPU\n",
|
195 |
-
"column_names = dataset.column_names\n",
|
196 |
-
"input_dataset = dataset.map(preprocess_function,\n",
|
197 |
-
" remove_columns=column_names,\n",
|
198 |
-
" batched=True,\n",
|
199 |
-
" num_proc=48\n",
|
200 |
-
")"
|
201 |
-
]
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"cell_type": "code",
|
205 |
-
"execution_count": 9,
|
206 |
-
"id": "a9b1b467",
|
207 |
-
"metadata": {},
|
208 |
-
"outputs": [],
|
209 |
-
"source": [
|
210 |
-
"def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):\n",
|
211 |
-
" \"\"\"\n",
|
212 |
-
" Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.\n",
|
213 |
-
" Shuffle batches if `shuffle` is `True`.\n",
|
214 |
-
" \"\"\"\n",
|
215 |
-
" steps_per_epoch = len(dataset) // batch_size\n",
|
216 |
-
"\n",
|
217 |
-
" if shuffle:\n",
|
218 |
-
" batch_idx = jax.random.permutation(rng, len(dataset))\n",
|
219 |
-
" else:\n",
|
220 |
-
" batch_idx = jnp.arange(len(dataset))\n",
|
221 |
-
"\n",
|
222 |
-
" batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.\n",
|
223 |
-
" batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))\n",
|
224 |
-
"\n",
|
225 |
-
" for idx in batch_idx:\n",
|
226 |
-
" batch = dataset[idx] \n",
|
227 |
-
" batch = {k: jnp.array(v) for k, v in batch.items()}\n",
|
228 |
-
" batch = shard(batch)\n",
|
229 |
-
" yield batch"
|
230 |
-
]
|
231 |
-
},
|
232 |
-
{
|
233 |
-
"cell_type": "code",
|
234 |
-
"execution_count": 10,
|
235 |
-
"id": "0a628505",
|
236 |
-
"metadata": {},
|
237 |
-
"outputs": [
|
238 |
-
{
|
239 |
-
"name": "stderr",
|
240 |
-
"output_type": "stream",
|
241 |
-
"text": [
|
242 |
-
"INFO:absl:Starting the local TPU driver.\n",
|
243 |
-
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
|
244 |
-
"INFO:absl:Unable to initialize backend 'gpu': Not found: Could not find registered platform with name: \"cuda\". Available platform names are: Host TPU Interpreter\n"
|
245 |
-
]
|
246 |
-
}
|
247 |
-
],
|
248 |
-
"source": [
|
249 |
-
"rng = jax.random.PRNGKey(23) # Use training_args.seed\n",
|
250 |
-
"batch_size = 64 # Per device\n",
|
251 |
-
"super_batch_size = batch_size * jax.device_count()"
|
252 |
-
]
|
253 |
-
},
|
254 |
-
{
|
255 |
-
"cell_type": "code",
|
256 |
-
"execution_count": 11,
|
257 |
-
"id": "b3a5ce7d",
|
258 |
-
"metadata": {},
|
259 |
-
"outputs": [],
|
260 |
-
"source": [
|
261 |
-
"loader = data_loader(rng, input_dataset, batch_size=super_batch_size)"
|
262 |
-
]
|
263 |
-
},
|
264 |
-
{
|
265 |
-
"cell_type": "code",
|
266 |
-
"execution_count": 12,
|
267 |
-
"id": "67aa8f9c",
|
268 |
-
"metadata": {},
|
269 |
-
"outputs": [],
|
270 |
-
"source": [
|
271 |
-
"superbatch = next(iter(loader))"
|
272 |
-
]
|
273 |
-
},
|
274 |
-
{
|
275 |
-
"cell_type": "code",
|
276 |
-
"execution_count": 13,
|
277 |
-
"id": "7cd99402",
|
278 |
-
"metadata": {},
|
279 |
-
"outputs": [
|
280 |
-
{
|
281 |
-
"data": {
|
282 |
-
"text/plain": [
|
283 |
-
"dict_keys(['attention_mask', 'input_ids', 'labels'])"
|
284 |
-
]
|
285 |
-
},
|
286 |
-
"execution_count": 13,
|
287 |
-
"metadata": {},
|
288 |
-
"output_type": "execute_result"
|
289 |
-
}
|
290 |
-
],
|
291 |
-
"source": [
|
292 |
-
"superbatch.keys()"
|
293 |
-
]
|
294 |
-
},
|
295 |
-
{
|
296 |
-
"cell_type": "code",
|
297 |
-
"execution_count": 14,
|
298 |
-
"id": "652a4a9e",
|
299 |
-
"metadata": {},
|
300 |
-
"outputs": [
|
301 |
-
{
|
302 |
-
"data": {
|
303 |
-
"text/plain": [
|
304 |
-
"8"
|
305 |
-
]
|
306 |
-
},
|
307 |
-
"execution_count": 14,
|
308 |
-
"metadata": {},
|
309 |
-
"output_type": "execute_result"
|
310 |
-
}
|
311 |
-
],
|
312 |
-
"source": [
|
313 |
-
"len(superbatch[\"labels\"])"
|
314 |
-
]
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"cell_type": "code",
|
318 |
-
"execution_count": 15,
|
319 |
-
"id": "de7de4e8",
|
320 |
-
"metadata": {},
|
321 |
-
"outputs": [
|
322 |
-
{
|
323 |
-
"data": {
|
324 |
-
"text/plain": [
|
325 |
-
"(8, 64, 257)"
|
326 |
-
]
|
327 |
-
},
|
328 |
-
"execution_count": 15,
|
329 |
-
"metadata": {},
|
330 |
-
"output_type": "execute_result"
|
331 |
-
}
|
332 |
-
],
|
333 |
-
"source": [
|
334 |
-
"superbatch[\"labels\"].shape"
|
335 |
-
]
|
336 |
-
},
|
337 |
-
{
|
338 |
-
"cell_type": "markdown",
|
339 |
-
"id": "6800153b",
|
340 |
-
"metadata": {},
|
341 |
-
"source": [
|
342 |
-
"Any image sequence should begin with `image_bos`:"
|
343 |
-
]
|
344 |
-
},
|
345 |
-
{
|
346 |
-
"cell_type": "code",
|
347 |
-
"execution_count": 16,
|
348 |
-
"id": "cfe23a71",
|
349 |
-
"metadata": {},
|
350 |
-
"outputs": [],
|
351 |
-
"source": [
|
352 |
-
"assert superbatch[\"labels\"][1][5][0].item() == image_bos"
|
353 |
-
]
|
354 |
-
},
|
355 |
-
{
|
356 |
-
"cell_type": "code",
|
357 |
-
"execution_count": null,
|
358 |
-
"id": "0fb899b4",
|
359 |
-
"metadata": {},
|
360 |
-
"outputs": [],
|
361 |
-
"source": []
|
362 |
-
}
|
363 |
-
],
|
364 |
-
"metadata": {
|
365 |
-
"kernelspec": {
|
366 |
-
"display_name": "Python 3 (ipykernel)",
|
367 |
-
"language": "python",
|
368 |
-
"name": "python3"
|
369 |
-
},
|
370 |
-
"language_info": {
|
371 |
-
"codemirror_mode": {
|
372 |
-
"name": "ipython",
|
373 |
-
"version": 3
|
374 |
-
},
|
375 |
-
"file_extension": ".py",
|
376 |
-
"mimetype": "text/x-python",
|
377 |
-
"name": "python",
|
378 |
-
"nbconvert_exporter": "python",
|
379 |
-
"pygments_lexer": "ipython3",
|
380 |
-
"version": "3.8.10"
|
381 |
-
}
|
382 |
-
},
|
383 |
-
"nbformat": 4,
|
384 |
-
"nbformat_minor": 5
|
385 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/predictions/wandb-examples-from-backend.py
DELETED
@@ -1,52 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
from PIL import Image, ImageDraw, ImageFont
|
5 |
-
import wandb
|
6 |
-
import os
|
7 |
-
|
8 |
-
from dalle_mini.backend import ServiceError, get_images_from_backend
|
9 |
-
from dalle_mini.helpers import captioned_strip
|
10 |
-
|
11 |
-
os.environ["WANDB_SILENT"] = "true"
|
12 |
-
os.environ["WANDB_CONSOLE"] = "off"
|
13 |
-
|
14 |
-
# set id to None so our latest images don't get overwritten
|
15 |
-
id = None
|
16 |
-
run = wandb.init(id=id,
|
17 |
-
entity='wandb',
|
18 |
-
project="hf-flax-dalle-mini",
|
19 |
-
job_type="predictions",
|
20 |
-
resume="allow"
|
21 |
-
)
|
22 |
-
|
23 |
-
def log_to_wandb(prompts):
|
24 |
-
try:
|
25 |
-
backend_url = os.environ["BACKEND_SERVER"]
|
26 |
-
|
27 |
-
strips = []
|
28 |
-
for prompt in prompts:
|
29 |
-
print(f"Getting selections for: {prompt}")
|
30 |
-
selected = get_images_from_backend(prompt, backend_url)
|
31 |
-
strip = captioned_strip(selected, prompt)
|
32 |
-
strips.append(wandb.Image(strip))
|
33 |
-
wandb.log({"images": strips})
|
34 |
-
except ServiceError as error:
|
35 |
-
print(f"Service unavailable, status: {error.status_code}")
|
36 |
-
except KeyError:
|
37 |
-
print("Error: BACKEND_SERVER unset")
|
38 |
-
|
39 |
-
prompts = [
|
40 |
-
"white snow covered mountain under blue sky during daytime",
|
41 |
-
"aerial view of beach during daytime",
|
42 |
-
"aerial view of beach at night",
|
43 |
-
"an armchair in the shape of an avocado",
|
44 |
-
"a logo of an avocado armchair playing music",
|
45 |
-
"young woman riding her bike trough a forest",
|
46 |
-
"rice fields by the mediterranean coast",
|
47 |
-
"white houses on the hill of a greek coastline",
|
48 |
-
"illustration of a shark with a baby shark",
|
49 |
-
"painting of an oniric forest glade surrounded by tall trees",
|
50 |
-
]
|
51 |
-
|
52 |
-
log_to_wandb(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/{seq2seq/requirements.txt → requirements.txt}
RENAMED
@@ -10,6 +10,7 @@ jupyter
|
|
10 |
wandb
|
11 |
nltk
|
12 |
optax
|
|
|
13 |
|
14 |
# Inference
|
15 |
ftfy
|
|
|
10 |
wandb
|
11 |
nltk
|
12 |
optax
|
13 |
+
git+https://github.com/patil-suraj/vqgan-jax.git@610d842dd33c739325a944102ed33acc07692dd5
|
14 |
|
15 |
# Inference
|
16 |
ftfy
|
dev/vqgan/JAX_VQGAN_f16_16384_Reconstruction.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|