File size: 5,571 Bytes
a4af9d2
 
 
 
 
 
0f2a50b
a4af9d2
 
 
 
 
 
 
 
 
7c82098
a4af9d2
 
 
 
3e7562a
 
a4af9d2
3e7562a
 
 
 
 
a4af9d2
 
3e7562a
a4af9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d356c04
a4af9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c82098
a4af9d2
 
 
7c82098
a4af9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c82098
 
a4af9d2
d356c04
 
 
 
 
 
a4af9d2
 
3e7562a
 
a4af9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d356c04
 
 
 
 
7be8469
d356c04
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import json
import requests
from mtranslate import translate
from prompts import PROMPT_LIST
import streamlit as st
import random
import transformers
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import fasttext
import SessionState

LOGO = "huggingwayang.png"

MODELS = {
    "GPT-2 Small": "flax-community/gpt2-small-indonesian",
    "GPT-2 Medium": "flax-community/gpt2-medium-indonesian",
    "GPT-2 Small finetuned on Indonesian academic journals": "Galuh/id-journal-gpt2"
}

headers = {}

@st.cache(show_spinner=False, persist=True, hash_funcs={transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel: lambda _: None})
def load_gpt(model_type):
    model = GPT2LMHeadModel.from_pretrained(MODELS[model_type])

    return model

@st.cache(show_spinner=False, persist=True, hash_funcs={transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer: lambda _: None})
def load_gpt_tokenizer(model_type):
    tokenizer = GPT2Tokenizer.from_pretrained(MODELS[model_type])

    return tokenizer

def get_image(text: str):
    url = "https://wikisearch.uncool.ai/get_image/"
    try:
        payload = {
            "text": text,
            "image_width": 400
        }
        data = json.dumps(payload)
        response = requests.request("POST", url, headers=headers, data=data)
        print(response.content)
        image = json.loads(response.content.decode("utf-8"))["url"]
    except:
        image = ""
    return image

st.set_page_config(page_title="Indonesian GPT-2 Demo")

st.title("Indonesian GPT-2")

ft_model = fasttext.load_model('lid.176.ftz')

# Sidebar
st.sidebar.image(LOGO)
st.sidebar.subheader("Configurable parameters")

max_len = st.sidebar.number_input(
    "Maximum length",
    value=100,
    help="The maximum length of the sequence to be generated."
)

temp = st.sidebar.slider(
    "Temperature",
    value=1.0,
    min_value=0.0,
    max_value=100.0,
    help="The value used to module the next token probabilities."
)

top_k = st.sidebar.number_input(
    "Top k",
    value=50,
    help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)

top_p = st.sidebar.number_input(
    "Top p",
    value=1.0,
    help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
)

st.markdown(
    """
    This demo uses the [small](https://huggingface.co/flax-community/gpt2-small-indonesian) and 
    [medium](https://huggingface.co/flax-community/gpt2-medium-indonesian) Indonesian GPT2 model 
    trained on the Indonesian [Oscar](https://huggingface.co/datasets/oscar), [MC4](https://huggingface.co/datasets/mc4) 
    and [Wikipedia](https://huggingface.co/datasets/wikipedia) dataset. We created it as part of the 
    [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).

    The demo supports "multi language" ;-), feel free to try a prompt on your language. We are also experimenting with 
    the sentence based image search using Wikipedia passages encoded with distillbert, and search the encoded sentence
    in the encoded passages using Facebook's Faiss.
    """
)

model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium', 'GPT-2 Small finetuned on Indonesian academic journals']))

if model_name in ["GPT-2 Small", "GPT-2 Medium"]:
    prompt_group_name = "GPT-2"
elif model_name in ["GPT-2 Small finetuned on Indonesian academic journals"]:
    prompt_group_name = "Indonesian Journals"

ALL_PROMPTS = list(PROMPT_LIST[prompt_group_name].keys())+["Custom"]
prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS)-1)

session_state = SessionState.get(prompt_box=None)

if prompt == "Custom":
    prompt_box = "Enter your text here"
else:
    prompt_box = random.choice(PROMPT_LIST[prompt_group_name][prompt])

session_state.prompt_box = prompt_box

text = st.text_area("Enter text", session_state.prompt_box)

if st.button("Run"):
    text = st.text_area("Enter text", session_state.prompt_box)

    with st.spinner(text="Getting results..."):
        lang_predictions, lang_probability = ft_model.predict(text.replace("\n", " "), k=3)
        if "__label__id" in lang_predictions:
            lang = "id"
        else:
            lang = lang_predictions[0].replace("__label__", "")
            text = translate(text, "id", lang)

        st.subheader("Result")
        model = load_gpt(model_name)
        tokenizer = load_gpt_tokenizer(model_name)

        input_ids = tokenizer.encode(text, return_tensors='pt')
        output = model.generate(input_ids=input_ids,
                                max_length=max_len,
                                temperature=temp,
                                top_k=top_k,
                                top_p=top_p,
                                repetition_penalty=2.0)

        text = tokenizer.decode(output[0], 
                                skip_special_tokens=True)
        st.write(text.replace("\n", "  \n"))

        st.text("Translation")
        translation = translate(text, "en", "id")

        if lang == "id":
            st.write(translation.replace("\n", "  \n"))

        else:
            st.write(translate(text, lang, "id").replace("\n", "  \n"))

        image_cat = "https://media.giphy.com/media/vFKqnCdLPNOKc/giphy.gif"
        image = get_image(translation.replace("\"", "'"))

        if image is not "":
            st.image(image, width=400)

        else:
            # display cat image if no image found
            st.image(image_cat, width=400)