Spaces:
Runtime error
Runtime error
File size: 6,048 Bytes
c6d338c be6f31c c6d338c c389ccc e770a74 c389ccc be6f31c ba901f8 c389ccc 8136881 c389ccc 8136881 c389ccc 8136881 32d232b c6d338c c389ccc e770a74 c389ccc ba901f8 c6d338c 2b4c283 c6d338c c389ccc c6d338c 2b4c283 c6d338c c389ccc c6d338c 2b4c283 c6d338c c389ccc c6d338c 0d55d70 66d7cd7 0d55d70 c389ccc 66eca30 b49a705 c634156 0d55d70 c6d338c c389ccc c6d338c c389ccc c6d338c c389ccc c6d338c c389ccc c6d338c c389ccc c6d338c c389ccc e770a74 c389ccc e770a74 c389ccc c6d338c c389ccc e9acb28 c389ccc ec09948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import json
import requests
from mtranslate import translate
from prompts import PROMPT_LIST
import streamlit as st
import random
import transformers
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import fasttext
import SessionState
LOGO = "huggingwayang.png"
MODELS = {
"GPT-2 Small": "flax-community/gpt2-small-indonesian",
"GPT-2 Medium": "flax-community/gpt2-medium-indonesian",
"GPT-2 Small finetuned on Indonesian academic journals": "Galuh/id-journal-gpt2"
}
headers = {}
@st.cache(show_spinner=False)
def load_gpt(model_type):
model = GPT2LMHeadModel.from_pretrained(MODELS[model_type])
return model
@st.cache(show_spinner=False, hash_funcs={transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer: lambda _: None})
def load_gpt_tokenizer(model_type):
tokenizer = GPT2Tokenizer.from_pretrained(MODELS[model_type])
return tokenizer
def get_image(text: str):
url = "https://wikisearch.uncool.ai/get_image/"
try:
payload = {
"text": text,
"image_width": 400
}
data = json.dumps(payload)
response = requests.request("POST", url, headers=headers, data=data)
print(response.content)
image = json.loads(response.content.decode("utf-8"))["url"]
except:
image = ""
return image
st.set_page_config(page_title="Indonesian GPT-2 Demo")
st.title("Indonesian GPT-2")
ft_model = fasttext.load_model('lid.176.ftz')
# Sidebar
st.sidebar.image(LOGO)
st.sidebar.subheader("Configurable parameters")
max_len = st.sidebar.number_input(
"Maximum length",
value=100,
help="The maximum length of the sequence to be generated."
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.0,
max_value=100.0,
help="The value used to module the next token probabilities."
)
top_k = st.sidebar.number_input(
"Top k",
value=50,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)
top_p = st.sidebar.number_input(
"Top p",
value=1.0,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
)
st.markdown(
"""
This demo uses the [small](https://huggingface.co/flax-community/gpt2-small-indonesian) and
[medium](https://huggingface.co/flax-community/gpt2-medium-indonesian) Indonesian GPT2 model
trained on the Indonesian [Oscar](https://huggingface.co/datasets/oscar), [MC4](https://huggingface.co/datasets/mc4)
and [Wikipedia](https://huggingface.co/datasets/wikipedia) dataset. We created it as part of the
[Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).
The demo supports "multi language" ;-), feel free to try a prompt on your language. We are also experimenting with
the sentence based image search using Wikipedia passages encoded with distillbert, and search the encoded sentence
in the encoded passages using Facebook's Faiss.
"""
)
model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium', 'GPT-2 Small finetuned on Indonesian academic journals']))
if model_name in ["GPT-2 Small", "GPT-2 Medium"]:
prompt_group_name = "GPT-2"
elif model_name in ["GPT-2 Small finetuned on Indonesian academic journals"]:
prompt_group_name = "Indonesian Journals"
session_state = SessionState.get(prompt=None, prompt_box=None, text=None)
ALL_PROMPTS = list(PROMPT_LIST[prompt_group_name].keys())+["Custom"]
prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS)-1)
# Update prompt
if session_state.prompt is None:
session_state.prompt = prompt
elif session_state.prompt is not None and (prompt != session_state.prompt):
session_state.prompt = prompt
session_state.prompt_box = None
session_state.text = None
else:
session_state.prompt = prompt
# Update prompt box
if session_state.prompt == "Custom":
session_state.prompt_box = "Enter your text here"
else:
if session_state.prompt is not None and session_state.prompt_box is None:
session_state.prompt_box = random.choice(PROMPT_LIST[prompt_group_name][session_state.prompt])
session_state.text = st.text_area("Enter text", session_state.prompt_box)
if st.button("Run"):
with st.spinner(text="Getting results..."):
lang_predictions, lang_probability = ft_model.predict(session_state.text.replace("\n", " "), k=3)
if "__label__id" in lang_predictions:
lang = "id"
text = session_state.text
else:
lang = lang_predictions[0].replace("__label__", "")
text = translate(session_state.text, "id", lang)
st.subheader("Result")
model = load_gpt(model_name)
tokenizer = load_gpt_tokenizer(model_name)
input_ids = tokenizer.encode(text, return_tensors='pt')
output = model.generate(input_ids=input_ids,
max_length=max_len,
temperature=temp,
top_k=top_k,
top_p=top_p,
repetition_penalty=2.0)
text = tokenizer.decode(output[0],
skip_special_tokens=True)
st.write(text.replace("\n", " \n"))
st.text("Translation")
translation = translate(text, "en", "id")
if lang == "id":
st.write(translation.replace("\n", " \n"))
else:
st.write(translate(text, lang, "id").replace("\n", " \n"))
image_cat = "https://media.giphy.com/media/vFKqnCdLPNOKc/giphy.gif"
image = get_image(translation.replace("\"", "'"))
if image is not "":
st.image(image, width=400)
else:
# display cat image if no image found
st.image(image_cat, width=400)
# Reset state
session_state.prompt = None
session_state.prompt_box = None
session_state.text = None |