import streamlit as st import requests # Designing the interface st.title("🖼️ Image Captioning Demo 📝") st.write("[Yih-Dar SHIEH](https://huggingface.co/ydshieh)") st.sidebar.markdown( """ An image captioning model by combining ViT model with GPT2 model. The encoder (ViT) and decoder (GPT2) are combined using Hugging Face transformers' [Vision-To-Text Encoder-Decoder framework](https://huggingface.co/transformers/master/model_doc/visionencoderdecoder.html). The pretrained weights of both models are loaded, with a set of randomly initialized cross-attention weights. The model is trained on the COCO 2017 dataset for about 6900 steps (batch_size=256). [Follow-up work of [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).]\n """ ) with st.spinner('Loading and compiling ViT-GPT2 model ...'): from model import * st.sidebar.title("Select a sample image") image_id = st.sidebar.selectbox( "Please choose a sample image", sample_image_ids ) random_image_id = None if st.sidebar.button("Random COCO 2017 (val) images"): random_image_id = get_random_image_id() if random_image_id is not None: image_id = random_image_id st.write(image_id) sample_name = f"COCO_val2017_{str(image_id).zfill(12)}.jpg" sample_path = os.path.join(sample_dir, sample_name) if os.path.isfile(sample_path): image = Image.open(sample_path) else: url = f"http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg" image = Image.open(requests.get(url, stream=True).raw) resized = image.resize(size=(384, 384)) show = st.image(resized, width=384) show.image(resized, '\n\nSelected Image', width=384) resized.close() # For newline st.sidebar.write('\n') with st.spinner('Generating image caption ...'): caption = predict(image) caption_en = caption st.header(f'Predicted caption:\n\n') st.subheader(caption_en) st.sidebar.header("ViT-GPT2 predicts:") st.sidebar.write(f"**English**: {caption}") image.close()