Spaces:
Runtime error
Runtime error
from .utils import get_transformed_image | |
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import os | |
import matplotlib.pyplot as plt | |
import re | |
from mtranslate import translate | |
from .utils import ( | |
read_markdown, | |
tokenizer, | |
language_mapping, | |
code_to_name, | |
voicerss_tts | |
) | |
import requests | |
from PIL import Image | |
from .model.flax_clip_vision_mbart.modeling_clip_vision_mbart import ( | |
FlaxCLIPVisionMBartForConditionalGeneration, | |
) | |
from streamlit import caching | |
def app(state): | |
mic_state = state | |
with st.beta_expander("Usage"): | |
st.write(read_markdown("usage.md")) | |
st.write("\n") | |
st.write(read_markdown("intro.md")) | |
# st.sidebar.title("Generation Parameters") | |
max_length = 64 | |
with st.sidebar.beta_expander('Generation Parameters'): | |
do_sample = st.checkbox("Sample", value=False, help="Sample from the model instead of using beam search.") | |
top_k = st.number_input("Top K", min_value=10, max_value=200, value=50, step=1, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.") | |
num_beams = st.number_input(label="Number of Beams", min_value=2, max_value=10, value=4, step=1, help="Number of beams to be used in beam search.") | |
temperature = st.select_slider(label="Temperature", options = list(np.arange(0.0,1.1, step=0.1)), value=1.0, help ="The value used to module the next token probabilities.", format_func=lambda x: f"{x:.2f}") | |
top_p = st.select_slider(label = "Top-P", options = list(np.arange(0.0,1.1, step=0.1)),value=1.0, help="Nucleus Sampling : If set to float < 1, only the most probable tokens with probabilities that add up to :obj:`top_p` or higher are kept for generation.", format_func=lambda x: f"{x:.2f}") | |
if st.button("Clear All Cache"): | |
caching.clear_cache() | |
def load_model(ckpt): | |
return FlaxCLIPVisionMBartForConditionalGeneration.from_pretrained(ckpt) | |
def generate_sequence(pixel_values, lang_code, num_beams, temperature, top_p, do_sample, top_k, max_length): | |
lang_code = language_mapping[lang_code] | |
output_ids = mic_state.model.generate(input_ids=pixel_values, forced_bos_token_id=tokenizer.lang_code_to_id[lang_code], max_length=max_length, num_beams=num_beams, temperature=temperature, top_p = top_p, top_k=top_k, do_sample=do_sample) | |
print(output_ids) | |
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=max_length) | |
return output_sequence | |
mic_checkpoints = ["flax-community/clip-vit-base-patch32_mbart-large-50"] # TODO: Maybe add more checkpoints? | |
dummy_data = pd.read_csv("reference.tsv", sep="\t") | |
first_index = 25 | |
# Init Session State | |
if mic_state.image_file is None: | |
mic_state.image_file = dummy_data.loc[first_index, "image_file"] | |
mic_state.caption = dummy_data.loc[first_index, "caption"].strip("- ") | |
mic_state.lang_id = dummy_data.loc[first_index, "lang_id"] | |
image_path = os.path.join("images", mic_state.image_file) | |
image = plt.imread(image_path) | |
mic_state.image = image | |
if mic_state.model is None: | |
# Display Top-5 Predictions | |
with st.spinner("Loading model..."): | |
mic_state.model = load_model(mic_checkpoints[0]) | |
query1 = st.text_input( | |
"Enter a URL to an image", | |
value="http://images.cocodataset.org/val2017/000000397133.jpg", | |
) | |
col1, col2, col3 = st.beta_columns([2,1, 2]) | |
if col1.button( | |
"Get a random example", | |
help="Get a random example from the 100 `seeded` image-text pairs.", | |
): | |
sample = dummy_data.sample(1).reset_index() | |
mic_state.image_file = sample.loc[0, "image_file"] | |
mic_state.caption = sample.loc[0, "caption"].strip("- ") | |
mic_state.lang_id = sample.loc[0, "lang_id"] | |
image_path = os.path.join("images", mic_state.image_file) | |
image = plt.imread(image_path) | |
mic_state.image = image | |
col2.write("OR") | |
if col3.button("Use above URL"): | |
image_data = requests.get(query1, stream=True).raw | |
image = np.asarray(Image.open(image_data)) | |
mic_state.image = image | |
transformed_image = get_transformed_image(mic_state.image) | |
new_col1, new_col2 = st.beta_columns([5,5]) | |
# Display Image | |
new_col1.image(mic_state.image, use_column_width="always") | |
# Display Reference Caption | |
with new_col1.beta_expander("Reference Caption"): | |
st.write("**Reference Caption**: " + mic_state.caption) | |
st.markdown( | |
f"""**English Translation**: {mic_state.caption if mic_state.lang_id == "en" else translate(mic_state.caption, 'en')}""" | |
) | |
# Select Language | |
options = list(code_to_name.keys()) | |
lang_id = new_col2.selectbox( | |
"Language", | |
index=options.index(mic_state.lang_id), | |
options=options, | |
format_func=lambda x: code_to_name[x], | |
help="The language in which caption is to be generated." | |
) | |
sequence = [''] | |
if new_col2.button("Generate Caption", help="Generate a caption in the specified language."): | |
with st.spinner("Generating Sequence... This might take some time, you can read our Article meanwhile!"): | |
sequence = generate_sequence(transformed_image, lang_id, num_beams, temperature, top_p, do_sample, top_k, max_length) | |
# print(sequence) | |
if sequence!=['']: | |
new_col2.write( | |
"**Generated Caption**: "+sequence[0] | |
) | |
new_col2.write( | |
"**English Translation**: "+ sequence[0] if lang_id=="en" else translate(sequence[0]) | |
) | |
with new_col2: | |
try: | |
clean_text = re.sub(r'[^A-Za-z0-9 ]+', '', sequence[0]) | |
# st.write("**Cleaned Text**: ",clean_text) | |
audio_bytes = voicerss_tts(clean_text, lang_id) | |
st.markdown("**Audio for the generated caption**") | |
st.audio(audio_bytes) | |
except: | |
st.info("Unabled to generate audio. Please try again in some time.") |