Spaces:
Runtime error
Runtime error
Commit
·
270ef28
1
Parent(s):
2538d98
add utils
Browse files
utils.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchvision.io import read_image, ImageReadMode
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
5 |
+
from torchvision.transforms.functional import InterpolationMode
|
6 |
+
from transformers import MBart50TokenizerFast
|
7 |
+
import json
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
|
11 |
+
class Transform(torch.nn.Module):
|
12 |
+
def __init__(self, image_size):
|
13 |
+
super().__init__()
|
14 |
+
self.transforms = torch.nn.Sequential(
|
15 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
16 |
+
CenterCrop(image_size),
|
17 |
+
ConvertImageDtype(torch.float),
|
18 |
+
Normalize(
|
19 |
+
(0.48145466, 0.4578275, 0.40821073),
|
20 |
+
(0.26862954, 0.26130258, 0.27577711),
|
21 |
+
),
|
22 |
+
)
|
23 |
+
|
24 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
25 |
+
with torch.no_grad():
|
26 |
+
x = self.transforms(x)
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
transform = Transform(224)
|
31 |
+
|
32 |
+
|
33 |
+
def get_transformed_image(image):
|
34 |
+
if image.shape[-1] == 3 and isinstance(image, np.ndarray):
|
35 |
+
image = image.transpose(2, 0, 1)
|
36 |
+
image = torch.tensor(image)
|
37 |
+
return transform(image).unsqueeze(0).permute(0, 2, 3, 1).numpy()
|
38 |
+
|
39 |
+
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50")
|
40 |
+
|
41 |
+
language_mapping = {
|
42 |
+
"english": "en_XX",
|
43 |
+
"german": "de_DE",
|
44 |
+
"french": "fr_XX",
|
45 |
+
"spanish": "es_XX"
|
46 |
+
}
|
47 |
+
|
48 |
+
def generate_sequence(model, pixel_values, lang_code):
|
49 |
+
lang_code = language_mapping[lang_code]
|
50 |
+
output_ids = model.generate(input_ids=pixel_values, decoder_start_token_id=tokenizer.lang_code_to_id[lang_code], max_length=64, num_beams=4)
|
51 |
+
output_sequence = tokenizer.batch_decode(output_ids[0], skip_special_tokens=True, max_length=64)
|
52 |
+
return output_sequence
|