Spaces:
Build error
Build error
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
# import gradio as grad | |
# import ast | |
# # mdl_name = "deepset/roberta-base-squad2" | |
# mdl_name = "distilbert-base-cased-distilled-squad" | |
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) | |
# def answer_question(question,context): | |
# text= "{"+"'question': '"+question+"','context': '"+context+"'}" | |
# di=ast.literal_eval(text) | |
# response = my_pipeline(di) | |
# return response | |
# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() | |
# from transformers import pipeline | |
# import gradio as grad | |
# mdl_name = "Helsinki-NLP/opus-mt-en-zh" | |
# opus_translator = pipeline("translation", model=mdl_name) | |
# def translate(text): | |
# response = opus_translator(text) | |
# return response | |
# grad.Interface(translate, inputs=["text",], outputs="text").launch() | |
# from transformers import pipeline | |
# import gradio as grad | |
# mdl_name = "Helsinki-NLP/opus-mt-en-zh" | |
# opus_translator = pipeline("translation", model=mdl_name) | |
# def translate(text): | |
# response = opus_translator(text) | |
# return response | |
# txt=grad.Textbox(lines=1, label="English", placeholder="English Text here") | |
# out=grad.Textbox(lines=1, label="Chinese") | |
# grad.Interface(translate, inputs=txt, outputs=out).launch() | |
################################5-6 | |
# from transformers import AutoModel,AutoTokenizer,AutoModelForSeq2SeqLM | |
# import gradio as grad | |
# mdl_name = "Helsinki-NLP/opus-mt-en-fr" | |
# mdl = AutoModelForSeq2SeqLM.from_pretrained(mdl_name) | |
# my_tkn = AutoTokenizer.from_pretrained(mdl_name) | |
# #opus_translator = pipeline("translation", model=mdl_name) | |
# def translate(text): | |
# inputs = my_tkn(text, return_tensors="pt") | |
# trans_output = mdl.generate(**inputs) | |
# response = my_tkn.decode(trans_output[0], skip_special_tokens=True) | |
# #response = opus_translator(text) | |
# return response | |
# txt=grad.Textbox(lines=1, label="English", placeholder="English Text here") | |
# out=grad.Textbox(lines=1, label="French") | |
# grad.Interface(translate, inputs=txt, outputs=out).launch() | |
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer | |
# import gradio as grad | |
# mdl_name = "google/pegasus-xsum" | |
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name) | |
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name) | |
# def summarize(text): | |
# tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt") | |
# txt_summary = mdl.generate(**tokens) | |
# response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True) | |
# return response | |
# txt=grad.Textbox(lines=10, label="English", placeholder="English Text here") | |
# out=grad.Textbox(lines=10, label="Summary") | |
# grad.Interface(summarize, inputs=txt, outputs=out).launch() | |
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer | |
# import gradio as grad | |
# mdl_name = "google/pegasus-xsum" | |
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name) | |
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name) | |
# def summarize(text): | |
# tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt") | |
# translated_txt = mdl.generate(**tokens,num_return_sequences=5,max_length=200,temperature=1.5,num_beams=10) | |
# response = pegasus_tkn.batch_decode(translated_txt, skip_special_tokens=True) | |
# return response | |
# txt=grad.Textbox(lines=10, label="English", placeholder="English Text here") | |
# out=grad.Textbox(lines=10, label="Summary") | |
# grad.Interface(summarize, inputs=txt, outputs=out).launch() | |
# from transformers import pipeline | |
# import gradio as grad | |
# zero_shot_classifier = pipeline("zero-shot-classification") | |
# def classify(text,labels): | |
# classifer_labels = labels.split(",") | |
# #["software", "politics", "love", "movies", "emergency", "advertisment","sports"] | |
# response = zero_shot_classifier(text,classifer_labels) | |
# return response | |
# txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified") | |
# labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels") | |
# out=grad.Textbox(lines=1, label="Classification") | |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch() | |
from transformers import BartForSequenceClassification, BartTokenizer | |
import gradio as grad | |
bart_tkn = BartTokenizer.from_pretrained('facebook/bart-large-mnli') | |
mdl = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli') | |
def classify(text,label): | |
tkn_ids = bart_tkn.encode(text, label, return_tensors='pt') | |
tkn_lgts = mdl(tkn_ids)[0] | |
entail_contra_tkn_lgts = tkn_lgts[:,[0,2]] | |
probab = entail_contra_tkn_lgts.softmax(dim=1) | |
response = probab[:,1].item() * 100 | |
return response | |
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified") | |
labels=grad.Textbox(lines=1, label="Label", placeholder="Input a Label") | |
out=grad.Textbox(lines=1, label="Probablity of label being true is") | |
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch() | |